首页> 外文期刊>Genetic programming and evolvable machines >Transfer learning in constructive induction with Genetic Programming
【24h】

Transfer learning in constructive induction with Genetic Programming

机译:遗传编程建设性诱导的转移学习

获取原文
获取原文并翻译 | 示例

摘要

Transfer learning (TL) is the process by which some aspects of a machine learning model generated on a source task is transferred to a target task, to simplify the learning required to solve the target. TL in Genetic Programming (GP) has not received much attention, since it is normally assumed that an evolved symbolic expression is specifically tailored to a problem's data and thus cannot be used in other problems. The goal of this work is to present a broad and diverse study of TL in GP, considering a varied set of source and target tasks, and dealing with questions that have received little, or no attention, in previous GP literature. In particular, this work studies the performance of transferred solutions when the source and target tasks are from different domains, and when they do not share a similar input feature space. Additionally, the relationship between the success and failure of transferred solutions is studied, considering different source and target tasks. Finally, the predictability of TL performance is analyzed for the first time in GP literature. GP-based constructive induction of features is used to carry out the study, a wrapper-based approach where GP is used to construct feature transformations and an additional learning algorithm is used to fit the final model. The experimental work presents several notable results and contributions. First, TL is capable of generating solutions that outperform, in many cases, baseline methods in classification and regression tasks. Second, it is shown that some problems are good source problems while others are good targets in a TL system. Third, the transferability of solutions is not necessarily symmetric between two problems. Finally, results show that it is possible to predict the success of TL in some cases, particularly in classification tasks.
机译:传输学习(TL)是在源任务上生成的机器学习模型的某些方面传输到目标任务的过程,以简化解决目标所需的学习。在遗传编程(GP)中的TL尚未得到很多关注,因为通常假设进化符号表达式专门针对问题的数据量身定制,因此不能用于其他问题。这项工作的目标是在GP中展示一个广泛而多样化的TL,考虑到各种来源和目标任务,并处理以前的GP文献中收到了几乎或不关注的问题。特别是,当源和目标任务来自不同域时,这项工作研究了转移解决方案的性能,并且当它们不共享类似的输入特征空间时。此外,考虑到不同来源和目标任务,研究了转移解决方案的成功和失败之间的关系。最后,在GP文献中首次分析了T1性能的可预测性。基于GP的构造诱导特征用于执行该研究,一种基于包装的方法,其中GP用于构建特征变换和另外的学习算法来适合最终模型。实验工作呈现出几种显着的结果和贡献。首先,TL能够在许多情况下,在许多情况下,在分类和回归任务中的基线方法中产生胜过的解决方案。其次,表明一些问题是良好的源问题,而其他问题则在TL系统中是良好的目标。第三,解决方案的可转换性在两个问题之间不一定是对称的。最后,结果表明,在某些情况下,可以预测TL的成功,特别是在分类任务中。

著录项

  • 来源
    《Genetic programming and evolvable machines》 |2020年第4期|529-569|共41页
  • 作者单位

    Doctorado en Ciencias de la Ingenieria Departamento de Ingenieria Electrica y Electronica Tecol6gico Nacional de M6xico/I.T. Tijuana Blvd. Industrial y Av. ITR Tijuana S/N Mesa Otay CP. 22500 Tijuana BC Mexico;

    Doctorado en Ciencias de la Ingenieria Departamento de Ingenieria Electrica y Electronica Tecol6gico Nacional de M6xico/I.T. Tijuana Blvd. Industrial y Av. ITR Tijuana S/N Mesa Otay CP. 22500 Tijuana BC Mexico;

    LASIGE Faculdade de Ciencias Universidade de Lisboa Lisbon Portugal;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Transfer learning; Constructive induction of features; Genetic Programming;

    机译:转移学习;构造特征诱导;遗传编程;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号