首页> 外文期刊>Fuzzy sets and systems >Low-rank based Multi-Input Multi-Output Takagi-Sugeno fuzzy modeling for prediction of molten iron quality in blast furnace
【24h】

Low-rank based Multi-Input Multi-Output Takagi-Sugeno fuzzy modeling for prediction of molten iron quality in blast furnace

机译:基于低级的多输入多输出Takagi-Sugeno模糊模糊模糊模型,用于预测高炉铁水质量

获取原文
获取原文并翻译 | 示例

摘要

For complex blast furnace smelting systems with large time delay, accurate prediction of molten iron quality indicators plays an important guiding role in blast furnace control. Recently, some data-driven Multi-Input Multi-Output (MIMO) modeling methods have been proposed to model multiple molten iron quality indicators including molten iron temperature (MIT), silicon content ([Si]), phosphorus content ([P]) and sulfur content ([S]). However, those data-driven MIMO models do not consider the inter indicator correlation, which leads to the suboptimal model for the estimation of multiple molten iron quality indicators. This paper proposed a novel MIMO Takagi-Sugeno (T-S) fuzzy model with taking full account of the inter-indicator correlation. In the novel method, the inter-indicator correlation was explicitly modeled by a low-rank learning in a latent space that overcame the great challenge of jointly determining the fuzzy rules of MIMO T-S model and the inter-indicator correlation. For the corresponding optimization problem, an effective alternating optimization algorithm is presented. The validity of the proposed method is verified by simulation and comparison with some related methods on real blast furnace data. (c) 2020 Elsevier B.V. All rights reserved.
机译:对于复杂的高炉冶炼系统,具有大的时间延迟,精确预测铁水质量指标在高炉控制中起重要的指导作用。最近,已经提出了一些数据驱动的多输入多输出(MIMO)建模方法以模拟多种铁水质量指标,包括铁水温度(MIT),硅含量([Si]),磷含量([P])和硫含量([S])。然而,那些数据驱动的MIMO模型不考虑互相相关性,这导致估计多种铁水质量指标的次优模型。本文提出了一种新的MIMO Takagi-Sugeno(T-S)模糊模型,充分考虑了指示间相关性。在新的方法中,在潜在的空间中,在潜在的空间中明确地建模了指标间相关性,该潜在的潜在空间克服了联合确定了MIMO T-S模型的模糊规则和指示间相关性的巨大挑战。对于相应的优化问题,提出了一种有效的交替优化算法。通过仿真和与真正的高炉数据的一些相关方法进行仿真来验证所提出的方法的有效性。 (c)2020 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Fuzzy sets and systems》 |2021年第30期|178-192|共15页
  • 作者单位

    Yanshan Univ Engn Res Ctr Minist Educ Intelligent Control Syst & Intelligen Qinhuangdao 066004 Hebei Peoples R China;

    Yanshan Univ Engn Res Ctr Minist Educ Intelligent Control Syst & Intelligen Qinhuangdao 066004 Hebei Peoples R China;

    Yanshan Univ Engn Res Ctr Minist Educ Intelligent Control Syst & Intelligen Qinhuangdao 066004 Hebei Peoples R China|North China Univ Sci & Technol Coll Elect Engn Tangshan 063000 Peoples R China;

    Yanshan Univ Engn Res Ctr Minist Educ Intelligent Control Syst & Intelligen Qinhuangdao 066004 Hebei Peoples R China|Shanghai Jiao Tong Univ Dept Automat Shanghai 200240 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Takagi-Sugeno fuzzy model; Multi-Input Multi-Output; Blast furnace; Molten iron quality; Silicon content;

    机译:Takagi-sugeno模糊模型;多输入多输出;高炉;铁水质量;硅含量;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号