首页> 外文期刊>Fuzzy sets and systems >On the convergence of measurable set-valued function sequence on fuzzy measure space
【24h】

On the convergence of measurable set-valued function sequence on fuzzy measure space

机译:模糊测度空间上可测集值函数序列的收敛性

获取原文
获取原文并翻译 | 示例

摘要

In this paper we first discuss the measurable projection theorem on fuzzy measure space, and in this framework the characterization theorem with respect to measurability of a set-valued function is given. By means of the asymptotic structural characteristics of fuzzy measure, we discuss four forms of generalization for both Lebesgue's theorem, Riesz's theorem, and Egoroff's theorem, respectively. The relation between convergence of measurable set-valued function sequence and that of corresponding measurable real-valued function sequence are also discussed.
机译:在本文中,我们首先讨论了模糊测度空间上的可度量投影定理,并在此框架中给出了关于集值函数可度量性的刻画定理。通过模糊测度的渐近结构特征,我们分别讨论了Lebesgue定理,Riesz定理和Egoroff定理的四种形式的推广。还讨论了可测集值函数序列收敛与对应可测实值函数序列收敛之间的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号