首页> 外文期刊>Fuzzy sets and systems >Fuzzy logic-based object-oriented methods to reduce quantization error and contextual bias problems in software development
【24h】

Fuzzy logic-based object-oriented methods to reduce quantization error and contextual bias problems in software development

机译:基于模糊逻辑的面向对象方法,可减少软件开发中的量化误差和上下文偏差问题

获取原文
获取原文并翻译 | 示例

摘要

During the last several years, a considerable number of software development methods have been introduced to produce robust, reusable and adaptable software systems. Methods create software artifacts through the application of a large number of heuristic rules. These rules are generally expressed in two-valued logic. In object-oriented methods, for instance, candidate classes are identified by applying the following intuitive rule: "If an entity in a requirement specification is relevant and can exist autonomously in the application domain, then select it as a class". In this paper, we identify and define two major problems regarding how rules are defined and applied in current methods. First, two-valued logic cannot effectively express the approximate and inexact nature of a typical software development process. Although software engineers can perceive partial relevance of an entity and possibly select the entity as a partial candidate class, they are constrained by two-valued logic to quantize relevance into relevant and irrelevant. Second, the influence of contextual factors on rules is generally not modelled explicitly. We term these problems as quantization error and contextual bias problems, respectively. To reduce these problems, we propose to express heuristic rules using fuzzy logic. We illustrate formally how fuzzy logic-based methodological rules can help in lowering the effects of quantization error and contextual bias problems.
机译:在过去的几年中,已经引入了大量的软件开发方法来产生健壮,可重用和适应性强的软件系统。方法通过应用大量启发式规则来创建软件工件。这些规则通常用二值逻辑表示。例如,在面向对象的方法中,通过应用以下直观规则来识别候选类:“如果需求规范中的实体相关并且可以在应用程序域中自主存在,则将其选择为类”。在本文中,我们确定并定义了两个主要问题,这些问题涉及如何在当前方法中定义和应用规则。首先,二值逻辑不能有效地表达典型软件开发过程的近似性和不精确性。尽管软件工程师可以感知到实体的部分相关性,并可能选择该实体作为部分候选类,但是它们受到二值逻辑的约束,无法将相关性量化为相关和不相关。其次,上下文因素对规则的影响通常没有明确建模。我们将这些问题分别称为量化误差和上下文偏差问题。为了减少这些问题,我们建议使用模糊逻辑来表达启发式规则。我们正式说明了基于模糊逻辑的方法规则如何帮助降低量化误差和上下文偏差问题的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号