首页> 外文期刊>Fuzzy sets and systems >Approximation by pseudo-linear operators
【24h】

Approximation by pseudo-linear operators

机译:用伪线性算子逼近

获取原文
获取原文并翻译 | 示例

摘要

The approximation operators provided by classical approximation theory use exclusively as underlying algebraic structure the linear structure of the reals. Also they are all linear operators. We address in the present paper the following problems: Need all the approximation operators be linear? Is the linear structure the only one which allows us to construct particular approximation operators? As an answer to this problem we propose new, particular, pseudo-linear approximation operators, which are defined in some ordered semirings. We study these approximations from a theoretical point of view and we obtain that these operators have very similar properties to those provided by classical approximation theory. In this sense we obtain uniform approximation theorems of Weierstrass type, and Jackson-type error estimates in approximation by these operators.
机译:经典逼近理论提供的逼近算子仅将实数的线性结构用作基础代数结构。而且它们都是线性算子。我们在本文中解决以下问题:所有逼近算子都必须是线性的吗?线性结构是唯一允许我们构造特定逼近算符的结构吗?为了解决这个问题,我们提出了新的,特别的伪线性逼近算子,它们在某些有序半环中定义。我们从理论的角度研究了这些近似,并且我们发现这些算子具有与经典近似理论所提供的性质非常相似的性质。从这个意义上讲,我们获得了Weierstrass类型的统一逼近定理,以及这些算子逼近的Jackson型误差估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号