首页> 外文期刊>Fuzzy sets and systems >Robust adaptive sliding-mode control of condenser-cleaning mobile manipulator using fuzzy wavelet neural network
【24h】

Robust adaptive sliding-mode control of condenser-cleaning mobile manipulator using fuzzy wavelet neural network

机译:模糊小波神经网络的清洗机鲁棒自适应滑模控制。

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a robust adaptive sliding-mode control (RASMC) scheme for a class of condenser-cleaning mobile manipulator (CCMM) in the presence of parametric uncertainties and external disturbances. The development of control system is based on the fuzzy wavelet neural network (FWNN). First, a dynamic model is obtained in view of the practical CCMM system. Second. the FWNN is used to identify the unstructured system dynamics directly due to its ability to approximate a nonlinear continuous function to arbitrary accuracy. Using learning ability of neural networks, RASMC can coordinately control the condenser-cleaning mobile platform and the mounted manipulator with different dynamics efficiently. The implementation of the control algorithm is dependent on the adaptive sliding-mode control. Finally, based on the Lyapunov stability theory, the stability of the whole control system, the boundedness of the neural networks weight estimation errors, and the uniformly ultimately boundedness of the tracking error are all strictly guaranteed. Moreover, simulation results validate the superior control performance of the proposed adaptive control method.
机译:针对存在参数不确定性和外部干扰的一类冷凝器清洁移动机械手(CCMM),本文提出了一种鲁棒的自适应滑模控制(RASMC)方案。控制系统的开发基于模糊小波神经网络(FWNN)。首先,根据实际的CCMM系统获得动态模型。第二。由于FWNN能够将非线性连续函数近似为任意精度,因此可直接用于识别非结构化系统动力学。利用神经网络的学习能力,RASMC可以有效地以不同的动力学协调地控制冷凝器清洁移动平台和已安装的机械手。控制算法的实现取决于自适应滑模控制。最后,基于李雅普诺夫稳定性理论,严格控制了整个控制系统的稳定性,神经网络权重估计误差的有界性和跟踪误差的统一最终有界性。此外,仿真结果验证了所提出的自适应控制方法的优越控制性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号