首页> 外文期刊>Fuzzy sets and systems >Controlled convergence theorems for infinite dimension Henstock integrals of fuzzy valued functions based on weak equi-integrability
【24h】

Controlled convergence theorems for infinite dimension Henstock integrals of fuzzy valued functions based on weak equi-integrability

机译:基于弱等可积性的模糊函数无穷维Henstock积分的控制收敛定理

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we give the concept of weak Henstock equi-integrability for a sequence of fuzzy-number-valued functions. Under this notion, we investigate a new version of the Henstock's Lemma of fuzzy-number-valued functions. Thus, it is possible to discuss the controlled convergence theorems of fuzzy Henstock integral in sense of Vitali covering. Moreover, we prove that a uniform version of Sklyarenko's and Lusin's integrability condition of fuzzy Henstock integrals together with pointwise convergence of a sequence of integrable functions is sufficient for a convergence theorem of fuzzy Henstock integrals. As the applications of the controlled convergence theorem, we discuss the existence theorems of generalized solution for a class of discontinuous fuzzy differential equations. (C) 2017 Elsevier B.V. All rights reserved.
机译:在本文中,我们给出了模糊数值函数序列的弱Henstock等可积性的概念。在此概念下,我们研究了模糊数值函数的Henstock引理的新版本。因此,有可能在Vitali覆盖的意义上讨论模糊Henstock积分的受控收敛定理。此外,我们证明了模糊Henstock积分的Sklyarenko和Lusin可积条件的统一形式以及一系列可积函数的逐点收敛足以满足模糊Henstock积分的收敛定理。作为控制收敛定理的应用,我们讨论了一类不连续模糊微分方程广义解的存在性定理。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号