首页> 外文期刊>Fuzzy sets and systems >The controlled convergence theorems for the strong Henstock integrals of fuzzy-number-valued functions
【24h】

The controlled convergence theorems for the strong Henstock integrals of fuzzy-number-valued functions

机译:模糊数值函数的强Henstock积分的控制收敛定理

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we discuss the properties of the strong Henstock integrals of the fuzzy-number-valued functions using the notion of generalized derivatives, and prove the controlled convergence theorem for such integrals. Also, we present the concept of equi-integrability of a sequence for fuzzy-number-valued functions. Under this concept, we prove another controlled convergence theorem and establish the relationships between the above two controlled convergence theorems.
机译:在本文中,我们使用广义导数的概念讨论了模糊数值函数的强Henstock积分的性质,并证明了此类积分的受控收敛定理。同样,我们提出了模糊数值函数序列的等可积性的概念。在此概念下,我们证明了另一个受控收敛定理,并建立了上述两个受控收敛定理之间的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号