首页> 外文期刊>Future generation computer systems >Towards parallelism detection of sequential programs with graph neural network
【24h】

Towards parallelism detection of sequential programs with graph neural network

机译:朝着图形神经网络的顺序检测平行检测

获取原文
获取原文并翻译 | 示例

摘要

Development of the parallel processing technology is necessary to solve problems created by programs with complex structures that are computation- and data-intensive. In the parallelization process, the detection of parallelism is an important task. Automatic parallelism analysis tools help programmers in finding parallelism. However, these tools have limitations in analyzing complex programs. Herein, we propose a data-driven method that can be applied to parallelism detection. The proposed framework combines contextual flow graphs and a deep graph convolution neural network, which leverages the latest and most popular techniques for code embedding and graph classification. Further, we present a novel generator to solve the problem of existing dataset inadequacies. We use this generator to build a generic dataset for parallelism detection. The experimental results of our framework using the generated dataset demonstrate that using a graph representation of the code can capture domain-specific information, and our framework can accurately detect potential parallelism in sequential programs. This framework will enable the exploration of new tools to address the parallelism detection problem.
机译:并行处理技术的开发是必要的,以解决由具有计算和数据密集型的复杂结构创建的程序创建的问题。在并行化过程中,并行性的检测是一个重要的任务。自动并行分析工具帮助编程师寻找并行性。但是,这些工具在分析复杂程序方面具有局限性。这里,我们提出了一种可以应用于平行检测的数据驱动方法。所提出的框架结合了上下文流程图和深图卷积神经网络,它利用了用于代码嵌入和图形分类的最新和最流行的技术。此外,我们提出了一种新的发电机来解决现有数据集不足的问题。我们使用此生成器构建用于并行检测的通用数据集。我们使用生成的数据集的框架的实验结果表明,使用代码的图形表示可以捕获特定于域的信息,并且我们的框架可以准确地检测顺序程序中的潜在并行性。此框架将使新工具探索来解决并行检测问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号