首页> 外文期刊>Optical memory & neural networks >Mapping Graphs of Parallel Programs onto Graphs of Distributed Computer Systems by Recurrent Neural Networks
【24h】

Mapping Graphs of Parallel Programs onto Graphs of Distributed Computer Systems by Recurrent Neural Networks

机译:递归神经网络将并行程序图映射到分布式计算机系统图上

获取原文
获取原文并翻译 | 示例

摘要

A problem of mapping graphs of parallel programs onto graphs of distributed computer systems by recurrent neural network is formulated. Parameter values providing absence of incorrect solutions are experimentally determined. Because of introduction of penalty coefficient into Lyapunov function for the program graph edges non-coincided with the system graph edges, optimal solutions are found for mapping a "line"-graph onto a two-dimensional torus. For increasing probability of finding optimal mapping, a method for splitting the mapping is proposed. The method essence is a reducing solution matrix to a block-diagonal form. The Wang recurrent neural network is used to exclude incorrect solutions of the problem of mapping the line-graph onto a three-dimensional torus. This network converges quicker than the Hopfield one.
机译:提出了利用递归神经网络将并行程序图映射到分布式计算机系统图上的问题。实验确定提供不存在不正确解的参数值。由于对与系统图边缘不符的程序图边缘将惩罚系数引入Lyapunov函数中,因此找到了将“线”图映射到二维圆环上的最佳解决方案。为了增加找到最优映射的可能性,提出了一种划分映射的方法。方法的实质是将溶液矩阵还原为对角线形式。 Wang递归神经网络用于排除将线图映射到三维圆环上的问题的错误解决方案。该网络的收敛速度比Hopfield网络快。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号