首页> 外文期刊>Future generation computer systems >Feature data processing: Making medical data fit deep neural networks
【24h】

Feature data processing: Making medical data fit deep neural networks

机译:特征数据处理:制作医疗数据适合深度神经网络

获取原文
获取原文并翻译 | 示例

摘要

With the rapid development of artificial intelligence technology, deep neural networks (DNNs), especially convolutional neural networks (CNNs) and recurrent neural networks (RNNs), have been widely used. However, the current application fields of DNN are severely limited. For example, CNN is mainly used to process image format data, and RNNs are often used to process voice and text format data. How to use DNNs to process general medical data, especially feature data, is gradually becoming a popular research topic. To effectively improve the current situation of blindly using DNN on feature data, this paper proposes a practical, systematic feature data processing system (FDPS). Using multiple data processing methods, the processed data are more suitable for analysis using DNN. Some constructive advice on choosing a better DNN model architecture suitable for training such data is also provided. Then, network traffic data of the Internet of Medical Things (IoMT) are used as an example to verify the effectiveness of the proposed system separately using CNN and RNN. The experimental results show that the proposed approach can use fewer training data and that a simpler model architecture achieves better performance compared with other existing methods. To the best of our knowledge, this paper is the first to clearly define feature data, propose a detailed and systematic processing method to make it suitable for DNN training, and provide some specific suggestions on how to choose an appropriate DNN model architecture. Furthermore, the system can provide an effective reference for the promotion of DNN applications, especially for the security and analysis of IoMT.
机译:随着人工智能技术的快速发展,已经广泛使用了深度神经网络(DNN),特别是卷积神经网络(CNNS)和经常性神经网络(RNN)。但是,DNN的当前应用领域受到严重限制。例如,CNN主要用于处理图像格式数据,并且通常用于处理语音和文本格式数据的RNN。如何使用DNN处理一般医疗数据,尤其是特征数据,逐渐成为流行的研究主题。为了在特征数据上有效地使用DNN盲目地改善目前的情况,提出了一种实用的系统特征数据处理系统(FDP)。使用多个数据处理方法,处理后的数据更适合使用DNN进行分析。还提供了一些关于选择适合培训此类数据的更好DNN模型架构的建设性建议。然后,使用互联网(IOMT)的网络流量数据(IOMT)作为示例,以便使用CNN和RNN单独验证所提出的系统的有效性。实验结果表明,与其他现有方法相比,该方法可以使用较少的培训数据,并且更简单的模型架构实现了更好的性能。据我们所知,本文是第一个清楚地定义特征数据的清晰和系统的处理方法,使其适合DNN培训,并提供有关如何选择适当的DNN模型架构的具体建议。此外,该系统可以为促进DNN应用提供有效参考,特别是对于IOMT的安全性和分析。

著录项

  • 来源
    《Future generation computer systems》 |2020年第8期|149-157|共9页
  • 作者单位

    School of Information Science and Engineering Shandong University Qingdao 266237 China;

    School of Information Science and Engineering Shandong University Qingdao 266237 China;

    School of Information Science and Engineering Shandong University Qingdao 266237 China;

    Center of Information Security Beijing University of Posts and Telecommunications Beijing 100876 China;

    School of Information Science and Engineering Shandong University Qingdao 266237 China;

    School of Physics and Electronics Shandong Normal University Jinan 250014 China;

    Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR) Shandong University. Jinan 250101 China;

    Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR) Shandong University. Jinan 250101 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Feature data processing; DNN; CNN; RNN; Network traffic; IoMT;

    机译:功能数据处理;DNN;CNN;rnn;网络流量;Iomt.;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号