首页> 外文期刊>Future generation computer systems >Automating orthogonal defect classification using machine learning algorithms
【24h】

Automating orthogonal defect classification using machine learning algorithms

机译:使用机器学习算法自动进行正交缺陷分类

获取原文
获取原文并翻译 | 示例

摘要

Software systems are increasingly being used in business or mission critical scenarios, where the presence of certain types of software defects, i.e., bugs, may result in catastrophic consequences (e.g., financial losses or even the loss of human lives). To deploy systems in which we can rely on, it is vital to understand the types of defects that tend to affect such systems. This allows developers to take proper action, such as adapting the development process or redirecting testing efforts (e.g., using a certain set of testing techniques, or focusing on certain parts of the system). Orthogonal Defect Classification (ODC) has emerged as a popular method for classifying software defects, but it requires one or more experts to categorize each defect in a quite complex and time-consuming process. In this paper, we evaluate the use of machine learning algorithms (k-Nearest Neighbors, Support Vector Machines, Naive Bayes, Nearest Centroid, Random Forest and Recurrent Neural Networks) for automatic classification of software defects using ODC, based on unstructured textual bug reports. Experimental results reveal the difficulties in automatically classifying certain ODC attributes solely using reports, but also suggest that the overall classification accuracy may be improved in most of the cases, if larger datasets are used. (C) 2019 Elsevier B.V. All rights reserved.
机译:软件系统越来越多地用于关键业务或任务关键场景中,其中某些类型的软件缺陷(即错误)的存在可能会导致灾难性后果(例如,财务损失甚至人员伤亡)。要部署我们可以依赖的系统,至关重要的是要了解倾向于影响此类系统的缺陷类型。这使开发人员可以采取适当的措施,例如调整开发流程或重定向测试工作(例如,使用一组特定的测试技术,或专注于系统的某些部分)。正交缺陷分类(ODC)已经成为一种用于对软件缺陷进行分类的流行方法,但是它需要一个或多个专家来以相当复杂且耗时的过程对每个缺陷进行分类。在本文中,我们基于非结构化文本错误报告,评估了使用机器学习算法(k最近邻,支持向量机,朴素贝叶斯,最近质心,随机森林和递归神经网络)使用ODC对软件缺陷进行自动分类的情况。 。实验结果揭示了仅使用报告就无法自动对某些ODC属性进行自动分类的困难,而且还表明,如果使用较大的数据集,则在大多数情况下,整体分类的准确性可能会有所提高。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号