首页> 外文期刊>Future generation computer systems >Hybrids of support vector machine wrapper and filter based framework for malware detection
【24h】

Hybrids of support vector machine wrapper and filter based framework for malware detection

机译:支持向量机包装器和基于过滤器的框架的混合体,用于恶意软件检测

获取原文
获取原文并翻译 | 示例

摘要

Malware replicates itself and produces offspring with the same characteristics but different signatures by using code obfuscation techniques. Current generation Anti-Virus (AV) engines employ a signature-template type detection approach where malware can easily evade existing signatures in the database. This reduces the capability of current AV engines in detecting malware. In this paper we propose a hybrid framework for malware detection by using the hybrids of Support Vector Machines Wrapper, Maximum-Relevance-Minimum-Redundancy Filter heuristics where Application Program Interface (API) call statistics are used as a malware features. The novelty of our hybrid framework is that it injects the filter's ranking score in the wrapper selection process and combines the properties of both wrapper and filters and API call statistics which can detect malware based on the nature of infectious actions instead of signature. To the best of our knowledge, this kind of hybrid approach has not been explored yet in the literature in the context of feature selection and malware detection. Knowledge about the intrinsic characteristics of malicious activities is determined by the API call statistics which is injected as a filter score into the wrapper's backward elimination process in order to find the most significant APIs. While using the most significant APIs in the wrapper classification on both obfuscated and benign types malware datasets, the results show that the proposed hybrid framework clearly surpasses the existing models including the independent filters and wrappers using only a very compact set of significant APIs. The performances of the proposed and existing models have further been compared using binary logistic regression. Various goodness of fit comparison criteria such as Chi Square, Akaike's Information Criterion (AIC) and Receiver Operating Characteristic Curve ROC are deployed to identify the best performing models. Experimental outcomes based on the above criteria also show that the proposed hybrid framework outperforms other existing models of signature types including independent wrapper and filter approaches to identify malware.
机译:恶意软件通过使用代码混淆技术自我复制并产生具有相同特征但签名不同的后代。当前一代的防病毒(AV)引擎采用签名模板类型检测方法,恶意软件可以轻松地逃避数据库中现有的签名。这降低了当前AV引擎检测恶意软件的能力。在本文中,我们通过使用支持向量机包装程序,最大相关性-最小冗余过滤器启发式算法的混合形式(其中应用程序接口(API)调用统计信息用作恶意软件功能),提出了一种用于恶意软件检测的混合框架。我们的混合框架的新颖之处在于,它在包装器选择过程中注入了过滤器的排名得分,并结合了包装器和过滤器的属性以及API调用统计信息,这些统计信息可以根据传染性行为的特征而不是特征来检测恶意软件。据我们所知,文献中尚未在功能选择和恶意软件检测的背景下探索这种混合方法。有关恶意活动的内在特征的知识由API调用统计信息确定,该统计信息作为过滤器得分注入包装程序的向后消除过程中,以查找最重要的API。在混淆类型和良性恶意软件数据集上使用包装器分类中最重要的API时,结果表明,所提出的混合框架明显优于仅使用非常紧凑的一组重要API的现有模型,包括独立的过滤器和包装器。使用二进制逻辑回归进一步比较了所提出模型和现有模型的性能。运用各种拟合优度比较标准(例如,Chi Square,Akaike的信息标准(AIC)和接收器工作特性曲线ROC)来确定性能最佳的模型。基于上述标准的实验结果还表明,提出的混合框架优于其他现有的签名类型模型,包括独立的包装程序和用于识别恶意软件的过滤器方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号