首页> 外文期刊>Expert Systems with Application >Multi-level hybrid support vector machine and extreme learning machine based on modified K-means for intrusion detection system
【24h】

Multi-level hybrid support vector machine and extreme learning machine based on modified K-means for intrusion detection system

机译:基于改进的K均值的入侵检测系统多级混合支持向量机和极限学习机

获取原文
获取原文并翻译 | 示例

摘要

Intrusion detection has become essential to network security because of the increasing connectivity between computers. Several intrusion detection systems have been developed to protect networks using different statistical methods and machine learning techniques. This study aims to design a model that deals with real intrusion detection problems in data analysis and classify network data into normal and abnormal behaviors. This study proposes a multi-level hybrid intrusion detection model that uses support vector machine and extreme learning machine to improve the efficiency of detecting known and unknown attacks. A modified K-means algorithm is also proposed to build a high-quality training dataset that contributes significantly to improving the performance of classifiers. The modified K-means is used to build new small training datasets representing the entire original training dataset, significantly reduce the training time of classifiers, and improve the performance of intrusion detection system. The popular KDD Cup 1999 dataset is used to evaluate the proposed model. Compared with other methods based on the same dataset, the proposed model shows high efficiency in attack detection, and its accuracy (95.75%) is the best performance thus far. (C) 2016 Elsevier Ltd. All rights reserved.
机译:由于计算机之间的连接不断增加,入侵检测已成为网络安全所必需的。已经开发了几种入侵检测系统,以使用不同的统计方法和机器学习技术来保护网络。本研究旨在设计一个模型,处理数据分析中的实际入侵检测问题,并将网络数据分类为正常和异常行为。这项研究提出了一种多层次的混合入侵检测模型,该模型使用支持向量机和极限学习机来提高检测已知和未知攻击的效率。还提出了一种改进的K-means算法来构建高质量的训练数据集,该数据集对改善分类器的性能做出了重要贡献。改进后的K-means用于构建代表整个原始训练数据集的新的小型训练数据集,显着减少分类器的训练时间,并提高入侵检测系统的性能。流行的KDD Cup 1999数据集用于评估提出的模型。与基于相同数据集的其他方法相比,该模型具有较高的攻击检测效率,其准确性(95.75%)是迄今为止的最佳性能。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号