首页> 外文OA文献 >Metamorphic malware detection based on support vector machine classification of malware sub-signatures
【2h】

Metamorphic malware detection based on support vector machine classification of malware sub-signatures

机译:基于恶意软件子签名的支持向量机分类的变态恶意软件检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Achieving accurate and efficient metamorphic malware detection remains a challenge. Metamorphic malware is able to mutate and alter its code structure in each infection that can circumvent signature matching detection. However, some vital functionalities and code segments remain unchanged between mutations. We exploit these unchanged features by the mean of classification using Support Vector Machine (SVM). N-gram features are extracted directly from malware binaries to avoid disassembly, which these features are then masked with the extracted known malware signature n-grams. These masked features reduce the number of selected n-gram features considerably. Our method is capable to accurately detect metamorphic malware with ~99 accuracy and low false positive rate. The proposed method is also superior to commercially available anti-viruses for detecting metamorphic malware.
机译:实现准确有效的变态恶意软件检测仍然是一个挑战。变态恶意软件能够在每次感染中变异和更改其代码结构,从而避免签名匹配检测。但是,某些重要功能和代码段在两次突变之间保持不变。我们通过使用支持向量机(SVM)进行分类来利用这些不变的功能。 N-gram特征直接从恶意软件二进制文件中提取以避免分解,然后用提取的已知恶意软件签名n-gram掩盖这些功能。这些蒙版特征大大减少了所选n-gram特征的数量。我们的方法能够以〜99的准确度和较低的假阳性率准确检测变态恶意软件。所提出的方法还优于用于检测变态恶意软件的市售反病毒软件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号