...
首页> 外文期刊>Food Hydrocolloids >Simultaneous analysis of the structural and mechanical changes during large deformation of whey protein isolate/gelatin gels at the macro and micro levels
【24h】

Simultaneous analysis of the structural and mechanical changes during large deformation of whey protein isolate/gelatin gels at the macro and micro levels

机译:同时分析宏观和微观乳清蛋白分离物/明胶凝胶大变形过程中的结构和机械变化

获取原文
获取原文并翻译 | 示例
           

摘要

The effect of microstructure on the fracture properties of whey protein isolate (WPI) gels with varying amounts of gelatin was analysed on the macro (mm scale) and micro (μm scale) levels. Eight percent WPI paniculate gels with 0-6% gelatin were prepared at a pH near the isoelectric point of whey protein. The tensile stage was placed directly under the confocal laser-scanning microscope (CLSM). The structural changes of the gel during the deformation are visualized in series of micrographs with simultaneous recording of stress and strain data with the tensile stage. The pure whey protein gel exhibited uneven failure at the macro level, where the crack propagated between the whey protein clusters, whereas the crack propagated smoothly through the gelatin phase in the whey/gelatin gel system. At higher magnification the pure WPI protein gel showed porous failure behaviour and gradually ruptured. The WPI gel with high gelatin concentration followed the rheological response of the gelatin phase, resulting in stretched failure behaviour with rapid rupture. The micro strain was calculated directly from micrographs, with the pure WPI gel reaching a seven times higher micro, strain than the macro strain. The difference between micro and macro strain decreases with increasing gelatin concentration. Threshold crack propagation values were identified at both the macro and micro levels, and the start of structural failure was observed long before any mechanical response. The fracture dynamics of mixed biopolymer gels can be analysed with this approach both structurally and Theologically at different length scales, contributing to a more comprehensive understanding of the failure behaviour.
机译:在宏观(毫米级别)和微米(微米级别)水平上分析了微观结构对含不同量明胶的乳清蛋白分离物(WPI)凝胶的断裂特性的影响。在接近乳清蛋白等电点的pH下,制备了含0-6%明胶的8%WPI圆锥状凝胶。拉伸台直接置于共聚焦激光扫描显微镜(CLSM)下。凝胶在变形过程中的结构变化在一系列显微照片中可见,同时在拉伸阶段同时记录了应力和应变数据。纯乳清蛋白凝胶在宏观水平上显示出不均匀破坏,裂纹在乳清蛋白簇之间传播,而裂纹在乳清/明胶凝胶系统中通过明胶相顺利传播。在更高的放大倍数下,纯WPI蛋白凝胶表现出多孔破坏行为并逐渐破裂。具有高明胶浓度的WPI凝胶遵循明胶相的流变响应,导致拉伸破坏行为并迅速破裂。微观应变是直接从显微照片计算得出的,纯WPI凝胶的微观应变是宏观应变的7倍。微观应变和宏观应变之间的差异随着明胶浓度的增加而减小。在宏观和微观两个层面都确定了阈值裂纹扩展值,并且在任何机械响应之前很久就观察到了结构破坏的开始。可以使用这种方法在不同长度尺度上从结构和神学角度分析混合生物聚合物凝胶的断裂动力学,从而有助于更全面地了解破坏行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号