首页> 外文期刊>Finite Elements in Analysis and Design >Fast methods based on modal stability procedure to evaluate natural frequency variability for industrial shell-type structures
【24h】

Fast methods based on modal stability procedure to evaluate natural frequency variability for industrial shell-type structures

机译:基于模态稳定性过程的快速方法,用于评估工业壳型结构的固有频率变化

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a set of parametric numerical methods to predict the effect of uncertainties in the input parameters on the natural frequencies of structures. The first method, called MCS-MSP, involves the Monte Carlo simulation (MCS) and the modal stability procedure (MSP). Here the weak sensitivity of the mode shape to variations in the input parameters of the model is exploited. A single finite element analysis is required for the MCS-MSP, leading to a fast Monte Carlo simulation. Next, two first order methods are presented that rely on the calculation of frequency sensitivity to random variables using either the finite element method (FOFE) or the MSP (FOMSP). These first order methods require only as many finite element or MSP analyses as the number of random variables. These fast and non-intrusive methods are intended to be used with industrial-size models with a large number of degrees of freedom and a large number of random variables. Finally, two applications are presented: a spot welded plate assembly and a car body in white. The stochastic results obtained (mean value, standard deviation, coefficient of variation, statistical distribution) with the three presented methods are compared to those obtained using the direct MCS as a reference. For both examples, the quality of the results obtained with these fast methods is satisfactory. Moreover, the gains are very valuable: the computation time involved in the proposed approaches based on MSP assumption is lower than the computation time needed for six deterministic finite element analyses.
机译:本文提出了一套参数数值方法来预测输入参数的不确定性对结构固有频率的影响。第一种方法称为MCS-MSP,涉及蒙特卡罗模拟(MCS)和模态稳定性过程(MSP)。在这里,利用了模式形状对模型输入参数变化的弱灵敏度。 MCS-MSP需要进行单个有限元分析,从而实现快速的蒙特卡洛仿真。接下来,提出了两种一阶方法,它们依赖于使用有限元方法(FOFE)或MSP(FOMSP)对随机变量的频率敏感性的计算。这些一阶方法仅需要与随机变量数量一样多的有限元或MSP分析。这些快速且非侵入性的方法旨在与具有大量自由度和大量随机变量的工业规模模型一起使用。最后,提出了两种应用:点焊板组件和白色车身。将通过三种提出的方​​法获得的随机结果(平均值,标准偏差,变异系数,统计分布)与使用直接MCS作为参考获得的结果进行比较。对于这两个示例,使用这些快速方法获得的结果的质量都是令人满意的。此外,这些增益非常有价值:基于MSP假设的拟议方法所涉及的计算时间比六次确定性有限元分析所需的计算时间短。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号