首页> 外文期刊>Finite Elements in Analysis and Design >NURBS enhanced HIFEM: A fully mesh-independent method with zero geometric discretization error
【24h】

NURBS enhanced HIFEM: A fully mesh-independent method with zero geometric discretization error

机译:NURBS增强型HIFEM:具有零几何离散误差的完全独立于网格的方法

获取原文
获取原文并翻译 | 示例

摘要

This manuscript introduces a NURBS-enhanced Hierarchical Interface-enriched Finite Element Method (NeHIFEM) for the mesh-independent treatment of multiphase problems with complex morphologies. The NeHIFEM implements a non-isoparametric mapping similar to that introduced in the NURBS Enhanced Finite Element Method (NEFEM) for the exact geometrical modeling of problems with curved materials interfaces. In this work, we propose a new generalized NURBS-enhanced mapping for triangular elements with three curvilinear edges, together with an isoparametric approach for evaluating basis functions in these elements to facilitate the construction of enrichment functions in the NeHIFEM. This unique capability allows the implementation of simple structured meshes for creating the computational model, while fully eliminating the geometric discretization error without introducing additional degrees of freedom. A new approach for the construction of higher-order enrichment functions in the NeHIFEM is also introduced to accurately capture gradient discontinuities along materials interfaces. Several example problems are presented to shed light on the accuracy and convergence rate of the NeHIFEM. We also show the application of this method for simulating the thermal and structural responses of heterogeneous materials with complex microstructures. (C) 2016 Elsevier B.V. All rights reserved.
机译:该手稿介绍了一种NURBS增强的分层接口丰富的有限元方法(NeHIFEM),用于网格无关的复杂形态多相问题的处理。 NeHIFEM实现了非等参映射,类似于NURBS增强有限元方法(NEFEM)中引入的映射,用于弯曲材料界面问题的精确几何建模。在这项工作中,我们为具有三个曲线边缘的三角形元素提出了一种新的广义NURBS增强映射,以及一种等参方法,用于评估这些元素中的基函数,以利于在NeHIFEM中构造浓缩函数。这种独特的功能允许实现用于创建计算模型的简单结构化网格的实现,同时完全消除几何离散误差,而无需引入其他自由度。还引入了一种在NeHIFEM中构造高阶富集函数的新方法,以准确捕获沿材料界面的梯度不连续性。提出了几个示例问题,以阐明NeHIFEM的准确性和收敛速度。我们还展示了该方法在模拟具有复杂微结构的异质材料的热和结构响应中的应用。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号