首页> 外文期刊>Finite Elements in Analysis and Design >Finite deformation analysis of visco-hyperelastic materials via solid tetrahedral finite elements
【24h】

Finite deformation analysis of visco-hyperelastic materials via solid tetrahedral finite elements

机译:固体四面体有限元对粘超弹性材料的有限变形分析

获取原文
获取原文并翻译 | 示例

摘要

An alternative solid finite element formulation for large deformation analysis of viscoelastic materials is proposed. This new approach is based on positions and makes possible a robust implementation of an isoparametric solid tetrahedral that presents no locking when dealing with complex stress, strain and strain rate for general structural analysis. A consistent way to write internal variables that accounts for finite viscoelastic strains is proposed. In this alternative methodology the neo-Hookean hyperelastic law is taken into account together with the Zener viscoelastic model. The evolution law is described in terms of a rate equation involving the viscous right Cauchy-Green stretch tensor. The study is dedicated to homogeneous materials under isothermal and quasi-static conditions. The nonlinear solution procedure is performed via the Newton-Raphson iterative technique and the backward-Euler method.
机译:提出了一种用于粘弹性材料大变形分析的替代固体有限元公式。这种新方法是基于位置的,它使等参实心四面体的稳健实现成为可能,当处理复杂的应力,应变和应变率进行一般结构分析时,该结构不会出现锁定现象。提出了一种一致的方法来写内部变量,以解释有限的粘弹性应变。在这种替代方法中,将新霍克超弹性定律与齐纳粘弹性模型一起考虑在内。根据涉及粘性右柯西-格林拉伸张量的速率方程来描述演化定律。该研究致力于等温和准静态条件下的均质材料。非线性求解过程是通过Newton-Raphson迭代技术和反向Euler方法执行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号