首页> 外文期刊>Finite Elements in Analysis and Design >Large deformation analysis of elastoplastic homogeneous materials via high order tetrahedral finite elements
【24h】

Large deformation analysis of elastoplastic homogeneous materials via high order tetrahedral finite elements

机译:弹塑性均质材料的高阶四面体有限元大变形分析

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with the development and application of high order full integrated tetrahedral finite elements to large deformable elastoplastic homogeneous solids. This strategy differs from usual ones adopted in literature that use low order and sub-integration methods to solve this kind of problems. The motivation is to find a more precise stress distribution inside solids that develops large strains in elastoplastic situations. In order to do so, two elastoplastic formulations are developed and implemented. The first, called hyperelastoplastic, is based on the multiplicative decomposition of the deformation gradient, the intermediate configuration, and the elastic Mandel stress tensor, and it is devoted to large strain evolution. The second, called Green-Naghdi elastoplastic, is based on the additive decomposition of the Green-Lagrange strain tensor and the second Piola-Kirchhoff stress tensor, and it is devoted to small strain and is used as a reference to the second development. In both cases, the three-dimensional von Mises yield criterion, the associative plastic flow rule and mixed hardening are used. Some structural problems have been numerically simulated, and convergence analysis is carried out. The results for the force versus displacement and the distributions of the plastic parameters are provided. The numerical results show that, as expected, the analysis error can be controlled by mesh refinement. The presented hyperelastoplastic formulation can model both finite elastic and finite plastic strains.
机译:本文涉及高阶全积分四面体有限元在大型可变形弹塑性均质固体中的开发和应用。这种策略与文献中采用低阶和子积分方法来解决此类问题的通常策略不同。目的是要在固体内部找到更精确的应力分布,从而在弹塑性情况下产生较大的应变。为此,开发并实施了两种弹塑性配方。第一个称为超弹塑性,基于变形梯度,中间构型和弹性Mandel应力张量的乘法分解,并且致力于大应变的演化。第二个称为Green-Naghdi弹塑性,基于Green-Lagrange应变张量和第二个Piola-Kirchhoff应力张量的加法分解,它专门用于小应变,并用作第二个发展的参考。在这两种情况下,均使用三维von Mises屈服准则,关联塑性流动规则和混合硬化。对一些结构问题进行了数值模拟,并进行了收敛分析。提供了力对位移的结果以及塑性参数的分布。数值结果表明,如预期的那样,可以通过网格细化来控制分析误差。提出的超弹塑性公式可以模拟有限的弹性应变和有限的塑性应变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号