首页> 外文期刊>Fatigue & fracture of engineering materials and structures >Gradient elasticity: a transformative stress analysis tool to design notched components against uniaxial/multiaxial high-cycle fatigue
【24h】

Gradient elasticity: a transformative stress analysis tool to design notched components against uniaxial/multiaxial high-cycle fatigue

机译:梯度弹性:一种变换应力分析工具,用于设计缺口构件以抵抗单轴/多轴高周疲劳

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates the accuracy of gradient elasticity in estimating high-cycle fatigue strength of notched components subjected to both uniaxial and multiaxial fatigue loading. A novel design methodology is formulated by combining Ru and Aifantis' gradient elasticity with the Theory of Critical Distances and the Modified Woehler Curve Method. The key feature of this innovative design methodology is that, via the Theory of Critical Distances, gradient elasticity's length scale parameter is directly estimated from conventional material fatigue properties (i.e. the plain fatigue limit and the threshold value of the stress intensity factor). From a stress analysis point of view, the proposed approach directly post-processes the gradient-enriched stress states determined, at the hot-spots, on the surface of the component under investigation (and independently of the sharpness of the stress concentrator being assessed). The accuracy and reliability of this design method were checked by using a large number of experimental results taken from the literature and generated by testing notched metallic samples under uniaxial as well as under multiaxial fatigue loading. This comprehensive validation exercise demonstrates that the systematic usage of this transformative design approach leads to the same level of accuracy as the one which is obtained by applying the classic Theory of Critical Distances. This result is certainly remarkable because the proposed approach is not only very efficient from a computational point of view, but it also allows high-cycle fatigue damage to be assessed by directly post-processing gradient-enriched stress states determined on the surface of the component being assessed.
机译:本文研究了梯度弹性在估计单轴和多轴疲劳载荷下的缺口构件的高周疲劳强度中的准确性。通过将Ru和Aifantis的梯度弹性与临界距离理论和改进的Woehler曲线方法相结合,提出了一种新颖的设计方法。这种创新设计方法的关键特征是,通过临界距离理论,可以从常规材料的疲劳特性(即普通疲劳极限和应力强度因子的阈值)直接估算出梯度弹性的长度比例参数。从应力分析的角度来看,所提出的方法直接后处理在热点处所研究部件表面​​上确定的富梯度应力状态(与所评估的应力集中器的锐度无关) 。该设计方法的准确性和可靠性是通过使用大量来自文献的实验结果来检验的,这些实验结果是通过在单轴以及多轴疲劳载荷下测试缺口金属样品而产生的。这项全面的验证工作表明,这种变革性设计方法的系统使用导致的准确性与通过应用经典“临界距离理论”获得的准确性相同。这个结果肯定是惊人的,因为所提出的方法不仅从计算的角度来看非常有效,而且还允许通过对零件表面上确定的梯度富集的应力状态进行直接后处理来评估高周疲劳损伤。被评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号