首页> 外文期刊>Fatigue & fracture of engineering materials and structures >Machine learning-based genetic feature identification and fatigue life prediction
【24h】

Machine learning-based genetic feature identification and fatigue life prediction

机译:基于机器学习的遗传特征识别和疲劳寿命预测

获取原文
获取原文并翻译 | 示例

摘要

Considering the nonlinear relationship between variables and fatigue life and the computational burden, a machine learning method integrating the artificial neural network (ANN) and partial least squares (PLS) algorithm was proposed as a framework to identify the genetic features through optimizing fatigue life prediction. Twenty-seven specimens of 316LN stainless steel under uniaxial and multiaxial loadings were used as examples. As results, early fatigue data were proved to be informative for fatigue life prediction. Moreover, five genetic features were identified out of them, and a predicting model was developed. The predicted fatigue life of these samples using only these five genetic features were all located within the 1.5-factor band. This framework can be easily extended to identify genetic features and to predict fatigue life of other materials under different loadings. Therefore, it provides an efficient option in this field to greatly reduce experimental time and cost.
机译:考虑到变量与疲劳寿命的非线性关系以及计算负担,提出了一种整合人工神经网络(ANN)和局部最小二乘(PLS)算法的机器学习方法作为框架,以通过优化疲劳寿命预测来识别遗传特征。 在单轴和多轴载荷下使用二十七个316LN不锈钢标本作为实施例。 结果,证明早期疲劳数据被证明是疲劳寿命预测的信息。 此外,将五种遗传特征识别出来,开发了预测模型。 使用这些五种遗传特征的预测疲劳寿命均位于1.5因子带内。 该框架可以很容易地扩展以识别遗传特征,并在不同载荷下预测其他材料的疲劳寿命。 因此,它在该字段中提供了一个有效的选择,以大大降低实验时间和成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号