机译:基于深度学习的COVID-19严重性评估框架,CT图像
Univ Elect Sci & Technol China MOE Key Lab Neuroinformat Chengdu Peoples R China;
Univ Elect Sci & Technol China MOE Key Lab Neuroinformat Chengdu Peoples R China;
Sichuan Univ West China Hosp West China Biomed Big Data Ctr Chengdu Peoples R China;
Univ Elect Sci & Technol China MOE Key Lab Neuroinformat Chengdu Peoples R China;
Univ Elect Sci & Technol China MOE Key Lab Neuroinformat Chengdu Peoples R China;
Wuhan Red Cross Hosp Dept Radiol Wuhan Peoples R China;
Cent South Univ Second Xiangya Hosp Dept Radiol Changsha Peoples R China;
Cent South Univ Second Xiangya Hosp Dept Radiol Changsha Peoples R China;
Chinese Acad Sci Inst Comp Technol Beijing Peoples R China;
Univ Elect Sci & Technol China MOE Key Lab Neuroinformat Chengdu Peoples R China;
COVID-19; Deep learning; Severity assessment; Multi-view lesion; Dual-Siamese channels; Clinical metadata;
机译:通过基于深度学习的对象评估从互联网图像中收集视觉物体
机译:基于临床和成像数据的Covid-19自动严重性评估机器学习方法的开发与验证:回顾性研究
机译:预测Covid-19严重程度的严重性相关标记和评估模型:中国杭州回顾性研究
机译:使用成像描述符的Covid-19严重性评估:非Covid-19肺炎的深度学习转移学习方法
机译:用图形卷积神经网络在单细胞RNA SEQ数据上预测Covid-19感染严重程度
机译:预测Covid-19严重程度的严重性相关标记和评估模型:中国杭州回顾性研究
机译:基于深度学习的Covid-19自动诊断框架,使用X射线图像