首页> 外文期刊>Expert systems with applications >EMG pattern recognition via Bayesian inference with scale mixture-based stochastic generative models
【24h】

EMG pattern recognition via Bayesian inference with scale mixture-based stochastic generative models

机译:通过贝叶斯推断与基于规模混合的随机生成模型的EMG模式识别

获取原文
获取原文并翻译 | 示例

摘要

Electromyogram (EMG) has been utilized to interface signals for prosthetic hands and information devices owing to its ability to reflect human motion intentions. Although various EMG classification methods have been introduced into EMG-based control systems, they do not fully consider the stochastic characteristics of EMG signals. This paper proposes an EMG pattern classification method incorporating a scale mixture-based generative model. A scale mixture model is a stochastic EMG model in which the EMG variance is considered as a random variable, enabling the representation of uncertainty in the variance. This model is extended in this study and utilized for EMG pattern classification. The proposed method is trained by variational Bayesian learning, thereby allowing the automatic determination of the model complexity. Furthermore, to optimize the hyperparameters of the proposed method with a partial discriminative approach, a mutual information-based determination method is introduced. Simulation and EMG analysis experiments demonstrated the relationship between the hyperparameters and classification accuracy of the proposed method as well as the validity of the proposed method. The comparison using public EMG datasets revealed that the proposed method outperformed the various conventional classifiers. These results indicated the validity of the proposed method and its applicability to EMG-based control systems. In EMG pattern recognition, a classifier based on a generative model that reflects the stochastic characteristics of EMG signals can outperform the conventional general-purpose classifier.
机译:由于其反映人类运动意图的能力,已经利用电灰度(EMG)对假肢手和信息设备的界面信号。虽然已经引入了基于EMG的控制系统的各种EMG分类方法,但它们没有完全考虑EMG信号的随机特性。本文提出了一种包含基于刻度混合的生成模型的EMG模式分类方法。比例混合模型是一种随机EMG模型,其中EMG方差被认为是随机变量,使得在方差方面能够表示不确定性。该模型在本研究中延长,并用于EMG模式分类。所提出的方法是由变分贝叶斯学习训练的,从而允许自动确定模型复杂性。此外,为了优化具有部分辨别方法的提出方法的封闭率,介绍了一种基于相互信息的确定方法。模拟和EMG分析实验证明了所提出的方法的超参数和分类准确性的关系以及所提出的方法的有效性。使用公共EMG数据集的比较显示,所提出的方法优于各种传统分类器。这些结果表明了所提出的方法的有效性及其对基于EMG的控制系统的适用性。在EMG模式识别中,基于反映EMG信号的随机特性的生成模型的分类器可以优于传统的通用分类器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号