首页> 外文期刊>Expert systems with applications >Modeling spatiotemporal patterns of gait anomaly with a CNN-LSTM deep neural network
【24h】

Modeling spatiotemporal patterns of gait anomaly with a CNN-LSTM deep neural network

机译:用CNN-LSTM深神经网络建模步态异常的时空模式

获取原文
获取原文并翻译 | 示例

摘要

In this work, we propose an end-to-end deep learning model that uses the skeleton data recorded by Kinect to capture spatiotemporal patterns for gait anomaly recognition. Via considering the entire skeleton, the proposed model captures the relationship between different body joints in locomotion. Unlike the common two-class or one-class approaches in skeleton-based methods, the proposed model considers a multi-class framework. Such a multi-class technique can be easily adapted for a more frequent and less expensive gait assessment outside of motion capture facilities. The proposed deep learning model is trained and evaluated on the publicly available Walking gait dataset and achieves an average accuracy of 90.57% in identifying nine different walking patterns. Through transfer learning, we also evaluate our model on two other publicly available datasets, acquiring an average accuracy of 83.64% on a dataset of three classes and 90.83% on a dataset with six classes of normal/ pathological gait patterns. The results of this work indicate the potential of markerless modalities such as Kinect for designing less costly and more convenient health infrastructures for assisted living. Additionally, an automatic and non-invasive gait assessment can further augment the clinical diagnosis for an extensive list of ailments that cause different types of gait disorders.
机译:在这项工作中,我们提出了一种端到端的深度学习模型,它使用Kinect记录的骨架数据来捕获用于步态异常识别的时空模式。通过考虑整个骨架,所提出的模型捕获了机车中不同体关节之间的关系。与基于骨架的方法中的常见两班或单级方法不同,所提出的模型考虑了多级框架。这种多级技术可以很容易地适应运动捕获设施之外更频繁和更便宜的步态评估。拟议的深度学习模型受到培训和评估公开的步行步态数据集,并在识别九种不同步行模式时实现90.57%的平均精度。通过转移学习,我们还在另外两个公共可公共数据集中评估我们的模型,在数据集中获得了83.64%的平均准确性,在数据集中获得了90.83%,具有六种正常/病理步态图案。这项工作的结果表明无标记型的潜力,如Kinect,用于设计的昂贵和更方便的卫生基础设施,以获得辅助生活。此外,自动和非侵入性的步态评估可以进一步增加临床诊断,以便广泛的疾病清单,导致不同类型的步态障碍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号