机译:基于U-NET和BI-COMMLSTM的肝脏和肿瘤CT图像序列分割策略研究
Shanghai Key Laboratory of Intelligent Manufacturing and Robotics Shanghai University Shanghai China|School of Mechatronic Engineering and Automation Shanghai University Shanghai China;
Shanghai Key Laboratory of Intelligent Manufacturing and Robotics Shanghai University Shanghai China|School of Mechatronic Engineering and Automation Shanghai University Shanghai China;
Shanghai Key Laboratory of Intelligent Manufacturing and Robotics Shanghai University Shanghai China|School of Mechatronic Engineering and Automation Shanghai University Shanghai China;
Shanghai Key Laboratory of Intelligent Manufacturing and Robotics Shanghai University Shanghai China|School of Mechatronic Engineering and Automation Shanghai University Shanghai China;
Department of Oncology Wuxi People’s Hospital Affiliated to Nanjing Medical University Wuxi China;
Department of Radiology Huashan Hospital Affiliated to Fudan University Shanghai China;
Shanghai Key Laboratory of Intelligent Manufacturing and Robotics Shanghai University Shanghai China|School of Mechatronic Engineering and Automation Shanghai University Shanghai China;
Shanghai Key Laboratory of Intelligent Manufacturing and Robotics Shanghai University Shanghai China|School of Mechatronic Engineering and Automation Shanghai University Shanghai China;
Bi-directional convolutional long short-term memory; CT image; Deep learning; Liver tumor; Sequence segmentation; U-net;
机译:改进的U-Net(MU-NET),其掺入对象依赖性高水平特征,用于改进肝脏和肝脏肿瘤的CT图像中的细分
机译:MSS U-Net:来自CT图像的3D细分,具有多尺度监督U-Net的CT图像
机译:基于改进的U-Net和图割的肝脏CT序列分割
机译:基于级联U形网的CT自动肝脏和肿瘤分割
机译:使用Gabor特征和机器学习算法从CT扫描图像自动进行肝脏和肿瘤分割
机译:使用U-NET在术中超声图像中脑肿瘤切除的自动分割
机译:改进的U-Net(MU-NET),其掺入对象依赖性高水平特征,用于改进肝脏和肝脏肿瘤的CT图像中的细分