首页> 外文期刊>Expert systems with applications >One-shot learning for acoustic diagnosis of industrial machines
【24h】

One-shot learning for acoustic diagnosis of industrial machines

机译:一次性诊断工业机器的一次性学习

获取原文
获取原文并翻译 | 示例

摘要

Automatic acoustic monitoring of machine health comprises a relevant field as, unfortunately, such equipment often suffers from faults, malfunctions, aging effects, etc. However, it is still an unexplored domain of research where the majority of existing works relies on traditional machine learning based approaches. After providing a critical survey of the available methods, this work highlights the most relevant limitations and designs a solution specifically addressing them. We introduce the one-shot learning paradigm into the specific domain and suitably extent it to (a) classify machine states, (b) detect novel ones, and (c) incorporate them in the class dictionary online. The backbone of the present system is a Siamese Neural Network (SNN) composed of convolutional layers. Conveniently, every processing stage depends on a standardized feature set free of domain knowledge, i.e. spectrograms. Interestingly, we enhance SNN's classification ability by an appropriately designed data selection scheme. The proposed solution is applied on a publicly available dataset of vibration signals representing four states of a drill bit, i.e. healthy state, chisel wear, flank wear, and outer corner wear. After extensive experiments thoroughly examining every aspect of the proposed solution, it is shown to achieve state of the art results while using limited amount of training data. Importantly, at the same time it is able to operate under evolving environments. Last but not least, we show that the obtained predictions are interpretable, a property which is rapidly becoming a requirement in modern machine learning based technologies.
机译:机器健康的自动声学监控包括一个相关领域,众所周知,这种设备经常存在故障,故障,老化效果等。然而,它仍然是大多数现有工程依赖于传统机器学习的未开发研究领域方法。在提供对可用方法的关键调查后,这项工作突出了最相关的限制,并设计专门解决它们的解决方案。我们将单次学习范例介绍到特定领域,并适当地将其分类为(a)分类机状态,(b)检测新颖的机器状态,(c)将它们纳入课堂字典在线。本系统的骨干是由卷积层组成的暹罗神经网络(SNN)。方便地,每个处理阶段都取决于无域知识的标准化特征,即频谱图。有趣的是,我们通过适当设计的数据选择方案来提高SNN的分类能力。所提出的解决方案应用于表示钻头的四个状态的公共可用数据集,即健康状态,凿磨损,侧面磨损和外角磨损。经过大量实验,彻底检查所提出的解决方案的各个方面,显示在使用有限量的训练数据的同时实现最新的结果。重要的是,同时它能够在不断变化的环境下运行。最后但并非最不重要的是,我们表明所获得的预测是可解释的,这是一种迅速成为基于现代机器学习技术的需求的财产。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号