首页> 外文期刊>Expert systems with applications >Feature discovery in NIR spectroscopy based Rocha pear classification
【24h】

Feature discovery in NIR spectroscopy based Rocha pear classification

机译:基于NIR光谱的Rocha梨分类特征发现

获取原文
获取原文并翻译 | 示例

摘要

Non-invasive techniques for automatic fruit classification are gaining importance in the global agro-industry as they allow for optimizing harvesting, storage, management, and distribution decisions. Visible, near infra-red (NIR) diffuse reflectance spectroscopy is one of the most employed techniques in such fruit classification. Typically, after the acquisition of a fruit reflectance spectrum the wavelength domain signal is preprocessed and a classifier is designed. Up to now, little or no work considered the problem of feature generation and selection of the reflectance spectrum. This work aims at filling this gap, by exploiting a feature engineering phase before the classifier. The usual approach where the classifier is fed directly with the reflectances measured at each wavelength is contrasted with the proposed division of the spectra into bands and their characterization in wavelength, frequency, and wavelength-frequency domains. Feature selection is also applied for optimizing efficiency, predictive accuracy, and for mitigating over-training. A total of 3050 Rocha pear samples from different origins and harvest years are considered. Statistical tests of hypotheses on classification results of soluble solids content - a predictor of both fruit sweetness and ripeness - show that the proposed preliminary phase of feature engineering outperforms the usual direct approach both in terms of accuracy and in the number of necessary features. Moreover, the method allows for the identification of features that are physical chemistry meaningful.
机译:自动果实分类的非侵入性技术在全球农业行业中取得重要性,因为它们允许优化收获,存储,管理和分配决策。可见,近红外线(NIR)弥漫反射光谱是这种果实分类中最受使用的技术之一。通常,在获取果实反射光谱之后,假处理波长域信号并且设计了分类器。到目前为止,很少或没有工作被认为是特征生成问题和反射谱的选择。这项工作旨在通过在分类器之前利用特征工程阶段来填补这种差距。分类器直接馈送在每个波长下测量的反射器的通常方法与光谱的所提出的分割与波长,频率和波长域中的表征形成对比。特征选择也适用于优化效率,预测精度以及缓解过度培训。考虑了来自不同起源和收获年的3050个Rocha梨样本。假设对可溶性固体含量分类结果的统计测试 - 果实甜味和成熟的预测因子此外,该方法允许识别有意义的物理化学的特征。

著录项

  • 来源
    《Expert systems with applications》 |2021年第9期|114949.1-114949.15|共15页
  • 作者单位

    Univ Algarve Fac Ciencias & Tecnol CEOT Ctr Elect Optoelect & Telecomunicacoes Campus Gambelas P-8005139 Faro Portugal;

    Univ Algarve Fac Ciencias & Tecnol CEOT Ctr Elect Optoelect & Telecomunicacoes Campus Gambelas P-8005139 Faro Portugal;

    Univ Algarve Fac Ciencias & Tecnol CEOT Ctr Elect Optoelect & Telecomunicacoes Campus Gambelas P-8005139 Faro Portugal;

    Univ Algarve Fac Ciencias & Tecnol CEOT Ctr Elect Optoelect & Telecomunicacoes Campus Gambelas P-8005139 Faro Portugal;

    Univ Algarve Fac Ciencias & Tecnol CEOT Ctr Elect Optoelect & Telecomunicacoes Campus Gambelas P-8005139 Faro Portugal;

    Univ Algarve MED Fac Ciencias & Tecnol Campus Gambelas P-8005139 Faro Portugal;

    Univ Algarve Campus Gambelas P-8005139 Faro Portugal|Univ Lisbon Inst Super Tecn IDMEC Ctr Intelligent Syst Lisbon Portugal;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Feature extraction; Feature selection; Data analysis; Classification; Machine learning;

    机译:特征提取;特征选择;数据分析;分类;机器学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号