首页> 外文期刊>Expert systems with applications >A deep learning based hybrid method for hourly solar radiation forecasting
【24h】

A deep learning based hybrid method for hourly solar radiation forecasting

机译:基于深度学习的小时辐射预测混合方法

获取原文
获取原文并翻译 | 示例

摘要

Solar radiation forecasting is a key technology to improve the control and scheduling performance of photovoltaic power plants. In this paper, a deep learning based hybrid method for 1-hour ahead Global Horizontal Irradiance (GHI) forecasting is proposed. Specifically, a deep learning based clustering method, deep time-series clustering, is adopted to group the GHI time series data into multiple clusters to better identify its irregular patterns and thus providing a better clustering performance. Then, the Feature Attention Deep Forecasting (FADF) deep neural network is built for each cluster to generate the GHI forecasts. The developed FADF dynamically allocates different importance to different features and utilizes the weighted features to forecast the next hour GHI. The solar forecasting performance of the proposed method is evaluated with the National Solar Radiation Database. Simulation results show that the proposed method yields the most accurate solar forecasting among the smart persistence and state-of-the-art models. The proposed method reduces the root mean square error as compared to the smart persistence by 11.88% and 12.65% for the Itupiranga and Ocala dataset, respectively.
机译:太阳辐射预测是改善光伏发电厂控制和调度性能的关键技术。在本文中,提出了一种基于深度学习的混合方法,用于1小时的全球水平辐照度(GHI)预测。具体地,采用深度学习的聚类方法,深度时间级聚类,将GHI时间序列数据分组到多个集群中,以更好地识别其不规则模式,从而提供更好的聚类性能。然后,为每个群集构建了专注于深度预测(FADF)深神经网络以生成GHI预测。开发的FADF动态分配对不同的功能的不同重视,并利用加权功能来预测下一个小时GHI。通过国家太阳辐射数据库评估所提出的方法的太阳能预测性能。仿真结果表明,该方法产生了智能持久性和最先进的模型中最精确的太阳能预测。该方法分别减少了与智能持久性相比的根均方误差,分别为ITUPIRANGA和OCALA数据集的智能持久性比较11.88%和12.65%。

著录项

  • 来源
    《Expert systems with applications》 |2021年第9期|114941.1-114941.11|共11页
  • 作者单位

    Guangdong Univ Technol Sch Automat Dept Elect Engn Guangzhou 510006 Peoples R China|Brunel Univ London Brunel Interdisciplinary Power Syst Res Ctr London UB8 3PH England;

    South China Univ Technol Sch Comp Sci & Engn Guangdong Prov Key Lab Computat Intelligence & Cy Guangzhou 510006 Peoples R China;

    Guangdong Univ Technol Sch Automat Dept Elect Engn Guangzhou 510006 Peoples R China;

    South China Univ Technol Sch Comp Sci & Engn Guangdong Prov Key Lab Computat Intelligence & Cy Guangzhou 510006 Peoples R China;

    Guangdong Univ Technol Sch Automat Dept Elect Engn Guangzhou 510006 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Solar forecasting; Deep learning; Clustering; Feature attention;

    机译:太阳能预测;深度学习;聚类;特征注意;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号