首页> 外文期刊>Expert systems with applications >A likelihood-based preference ranking organization method using dual point operators for multiple criteria decision analysis in Pythagorean fuzzy uncertain contexts
【24h】

A likelihood-based preference ranking organization method using dual point operators for multiple criteria decision analysis in Pythagorean fuzzy uncertain contexts

机译:基于可能的偏爱双点运算符的偏好偏好排名组织方法,用于毕达哥兰模糊不确定背景下的多个标准决策分析

获取原文
获取原文并翻译 | 示例

摘要

Considering the new uncertainty format of Pythagorean fuzzy (PF) sets, this research aims to launch a point operator-based likelihood measure and establish a PF preference ranking organization method for enrichment evaluations (PROMETHEE) to manipulate multiple criteria decision analysis (MCDA) tasks within PF environments. Different from the previous extensions of PROMETHEE into PF circumstances, this research presents dual PF point operators to delineate an innovative likelihood measure as a means to ascertainment of preference relationships. As contrasted with the current probability distribution approach, this research takes advantage of the conception of scalar functions as well as the lower approximated estimations and upper approximated estimations via the dual operators to construct a creative point operator-based likelihood measure. This new likelihood measure has novelty value and possesses several desirable properties, such as boundedness, complementarity, and weak transitivity; thus, it can better reveal the possibility of the dominance relations between PF information. More useful concepts of a likelihood-based predominance index and predominancebased preference functions are proposed to facilitate intra-criteria and inter-criteria comparisons in the forms of PF performance ratings and PF characteristics, respectively. Furthermore, their beneficial and desirable properties are also investigated. On the grounds of these new concepts and measures, a likelihood-based PROMETHEE methodology is exploited to address MCDA problems in uncertain circumstances involving Pythagorean fuzziness. By simultaneously employing the positive and negative predominating flows, the likelihoodbased PF PROMETHEE I yields a partial ranking of available alternatives and highlights any possible incomparability between alternatives. Based on the net predominating flow, the likelihood-based PROMETHEE II renders complete ranking orders of alternatives and preclude any incomparability among the competing alternatives. The reasonableness and effectuality of the initiated methodology are demonstrated with the assistance of a realistic case about evaluating financing policies for working capital management and a comparative analysis.
机译:考虑到毕达哥拉斯模糊(PF)集的新不确定性格式,该研究旨在启动基于点运营商的似然措施,并建立用于浓缩评估(Promethee)的PF偏好排名组织方法,以操纵多个标准决策分析(MCDA)任务PF环境。与普通普遍扩展到PF的情况不同,这项研究提出了双PF点运营商来描绘创新的似然措施作为确定偏好关系的手段。与当前概率分布方法形成鲜明对比,该研究利用了标量函数的概念以及经由双运算符的较低近似估计和上近似估计来构建基于创造点操作者的似然度量。这种新的似然措施具有新颖的值,并具有几种理想的性质,例如有界,互补性和弱传递;因此,它可以更好地揭示PF信息之间优势关系的可能性。提出了一种基于似然的主要指标和主要基于偏好功能的更有用的概念,以促进标准内部和标准间比较PF性能评级和PF特性的形式。此外,还研究了它们的有益和理想的性质。根据这些新的概念和措施,利用基于可能的常规方法来解决涉及毕达哥拉斯模糊性的不确定情况下的MCDA问题。通过同时采用正极和负占优势流动,似乎可能的PF丙普地区I产生了可用替代方案的部分排名,并突出了替代方案之间的任何可能的不相同性。基于净优势流动,基于似乎的似型丙虫二世培养了替代方案的排序订单,并排除了竞争替代品之间的任何不可统治性。关于评估营运资金管理和比较分析的融资政策的现实案例,证明了发起方法的合理性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号