首页> 外文期刊>Expert systems with applications >Binary chemical reaction optimization based feature selection techniques for machine learning classification problems
【24h】

Binary chemical reaction optimization based feature selection techniques for machine learning classification problems

机译:基于二元化学反应优化的机器学习分类问题特征选择技术

获取原文
获取原文并翻译 | 示例

摘要

Feature selection is an important pre-processing technique for dimensionality reduction of high-dimensional data in machine learning (ML) field. In this paper, we propose a binary chemical reaction optimization (BCRO) and a hybrid binary chemical reaction optimization-binary particle swarm optimization (HBCRO-BPSO) based feature selection techniques to optimize the number of selected features and improve the classification accuracy. Three objective functions have been used for the proposed feature selection techniques to compare their performances with a BPSO and advanced binary ant colony optimization (ABACO) along with an implemented GA based feature selection approach called as binary genetic algorithm (BGA). Five ML algorithms including K-nearest neighbor (KNN), logistic regression, Naive Bayes, decision tree, and random forest are considered for classification tasks. Experimental results tested on eleven benchmark datasets from UCI ML repository show that the proposed HBCRO-BPSO algorithm improves the average percentage of reduction in features (APRF) and average percentage of improvement in accuracy (APIA) by 5.01% and 3.83%, respectively over the existing BPSO based feature selection method; 4.58% and 3.12% over BGA; and 4.15% and 2.27% over ABACO when used with a KNN classifier.
机译:特征选择是机器学习(ML)场中的高维数据的维度降低的重要预处理技术。在本文中,我们提出了基于二元化学反应优化(BCRO)和混合二元化学反应优化 - 二元粒子群优化(HBCro-BPSO)的特征选择技术,以优化所选特征的数量并提高分类精度。已经使用三种目标功能用于将其与BPSO和高级二进制蚁群优化(ABACO)的性能进行比较,以及称为二进制遗传算法(BGA)的实现的GA基于特征选择方法。五毫升算法包括k最近邻居(knn),逻辑回归,幼稚贝叶斯,决策树和随机森林被认为是分类任务。来自UCI ML存储库的11个基准数据集测试的实验结果表明,所提出的HBCro-BPSO算法可以分别提高特征减少(APRF)的平均百分比(APRF)的平均百分比(APIA)的平均百分比分别超过5.01%和3.83%基于BPSOS的特征选择方法; BGA的4.58%和3.12%;与KNN分类器一起使用时,ABACO的4.15%和2.27%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号