首页> 外文期刊>Expert systems with applications >A study of the effects of negative transfer on deep unsupervised domain adaptation methods
【24h】

A study of the effects of negative transfer on deep unsupervised domain adaptation methods

机译:负转移对深无监督域适应方法影响的研究

获取原文
获取原文并翻译 | 示例

摘要

Intelligent systems driven by deep learning have become relevant in real-world applications with the increasing availability of technology and data. However, real-world settings require effective and robust deep learning models that are able to deal with unforeseen samples and a variety of data distributions. Recently, Unsupervised Domain Adaptation (UDA) for deep learning models (D-UDA) addresses such limitations by transferring knowledge from a labeled source domain to an unlabeled target domain, reducing the dataset shift between domain distributions. However, despite recent advances in D-UDA, current works have not been focused on studying specific cases in the distribution shifts under which D-UDA methods can ensure that transfer is helpful, avoiding a 'negative transfer' risk. In this paper, we present a study about the effect of different cases of negative transfer over the most popular and recent D-UDA methods reported in the literature. For this, we evaluate the accuracy performance of D-UDA methods over different scenarios containing different types of distribution shifts. Experimental results show that specific cases of distribution shifts generate negative transfer over the evaluated D-UDA methods. From this study, we provide some insights to select and design robust D-UDA methods in intelligent systems.
机译:深度学习驱动的智能系统在现实世界应用中具有越来越多的技术和数据的应用。然而,现实世界的设置需要有效且强大的深度学习模型,可以处理不可预见的样本和各种数据分布。最近,对于深度学习模型(D-UDA)的无监督域适应(UDA)通过将知识从标记的源域传送到未标记的目标域来解决这些限制,从而减少了域分布之间的数据集转换。然而,尽管D-UDA最近进展,但目前的作品尚未侧重于研究D-UDA方法可以确保转移有用的分配转变的具体情况,避免“负转移”风险。在本文中,我们展示了对文献中报道的最受欢迎和最近的D-UDA方法的不同病例的影响。为此,我们评估D-UDA方法在包含不同类型分发班次的不同场景上的准确性性能。实验结果表明,特定的分布换档情况会通过评估的D-UDA方法产生负转移。从本研究开始,我们提供了一些在智能系统中选择和设计强大的D-UDA方法的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号