首页> 外文期刊>Expert systems with applications >Candidate point selection using a self-attention mechanism for generating a smooth volatility surface under the SABR model
【24h】

Candidate point selection using a self-attention mechanism for generating a smooth volatility surface under the SABR model

机译:候选点选择使用自我关注机制来在SABR模型下产生平滑的波动表面

获取原文
获取原文并翻译 | 示例

摘要

In real markets, generating a smooth implied volatility surface requires an interpolation of the calibrated parameters by using smooth parametric functions. For this interpolation, practitioners do not use all the discrete parameter points but manually select candidate parameter points through time-consuming adjustments (e.g., removing outliers, comparing with the surface from the previous day, and considering daily market indexes) to generate a smooth and robust surface. In this paper, we propose neural network models that assist practitioners in generating a smooth implied volatility surface under the SABR (Hagan et al., 2002) model. Utilizing the selfattention mechanism of a transformer network (Vaswani et al., 2017) as a backbone network, we design two models: one that orders the parameter points by their likelihood to be selected as candidate parameter points and one that determines the candidate point set among the combinations of high-priority points. Experimental results from a 3-year period of real market S&P500 and KOSPI200 data show that the combination of two models can assist practitioners in the point selection task.
机译:在真实市场中,通过使用平滑的参数函数,产生平滑的隐含挥发性表面需要校准参数的插值。对于这种插值,从业者不使用所有离散的参数点,而是通过耗时的调整手动选择候选参数点(例如,除去异常值,与前一天的表面相比,并考虑日常市场指标)来产生平滑和鲁棒表面。在本文中,我们提出了神经网络模型,可以帮助从业者在SABR(Hagan等,2002)模型下产生光滑的隐含挥发性表面。利用变压器网络的自助活动机制(Vaswani等,2017)作为骨干网,我们设计了两个模型:一个符合其似乎作为候选参数点和确定候选点集的候选参数点的可能性点的一个型号在高优先级点的组合中。实验结果来自真实市场的3年期间S&P500和KOSPI200数据显示,两种模型的组合可以在点选择任务中提供从业者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号