首页> 外文期刊>Expert systems with applications >Analysis of factors that influence the performance of biometric systems based on EEG signals
【24h】

Analysis of factors that influence the performance of biometric systems based on EEG signals

机译:基于脑电图信号影响生物识别系统性能的因素分析

获取原文
获取原文并翻译 | 示例

摘要

Searching for new biometric traits is currently a necessity because traditional ones such as fingerprint, voice, or face are highly prone to forgery. For this reason, the study of bioelectric signals has the potential to develop new biometric systems. A motivation for using electroencephalogram signals is that they are unique to each person and are much more difficult to replicate than conventional biometrics. The objective of this study is to analyze the factors that influence the performance of a biometric system based on electroencephalogram signals. This work uses six different classifiers to compare several decomposition levels of the discrete wavelet transform as a preprocessing technique and also explores the importance of the recording time. These classifiers are Gaussian Naive Bayes Classifier, K-Nearest Neighbors, Random Forest, AdaBoost, Support Vector Machine, and Multilayer Perceptron. This work proves that the decomposition level does not have a high impact on the overall result of the system. On the other hand, the recording time of electroencephalograms has a significant impact on the performance of the classifiers. It is worth mentioning that this study used two different datasets to validate the results. Finally, our experiments show that Support Vector Machine and AdaBoost are the best classifiers for this particular problem since they achieved a sensitivity, specificity, and accuracy of 85.94 +/- 1.8, 99.55 +/- 0.06, 99.12 +/- 0.11 and 95.54 +/- 0.53, 99.91 +/- 0.01, and 99.83 +/- 0.02 respectively.
机译:寻找新的生物识别性状目前是必要的,因为传统的诸如指纹,声音或面部的传统易于伪造。因此,对生物电信号的研究具有开发新的生物识别系统的潜力。使用脑电图信号的动机是它们对每个人都是独一无二的,并且比传统的生物识别技术更难以复制。本研究的目的是分析基于脑电图信号影响生物识别系统性能的因素。这项工作使用六个不同的分类器将离散小波变换的几个分解电平与预处理技术进行比较,并且还探讨了录制时间的重要性。这些分类器是高斯天真贝叶斯分类器,K-Collect邻居,随机森林,adaboost,支持向量机和多层erceptron。这项工作证明,分解水平对系统的整体结果没有高影响。另一方面,脑电图的记录时间对分类器的性能产生了重大影响。值得一提的是,这项研究使用了两个不同的数据集来验证结果。最后,我们的实验表明,支持向量机和Adaboost是这种特定问题的最佳分类器,因为它们实现了85.94 +/- 1.8,99.55 +/- 0.06,99.12 +/- 0.11和95.54 +的灵敏度,特异性和准确性。 / - 0.53,99.91 +/- 0.01和99.83 +/- 0.02。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号