首页> 外文期刊>Expert systems with applications >RecRisk: An enhanced recommendation model with multi-facet risk control
【24h】

RecRisk: An enhanced recommendation model with multi-facet risk control

机译:RECRISK:具有多面风险控制的增强推荐模型

获取原文
获取原文并翻译 | 示例

摘要

Recommender systems (RSs) play a crucial role in helping users quickly find their desired services and promoting sales of service providers in e-commerce. However, service providers intentionally upload cherry-picked service information to mislead RSs for greater profit. Such misleading recommendations pose the risk of degrading user experience and gradually undermine users' confidence in the whole service market over the long term. Worse still, most current expert recommendation methods are more susceptible to such risk because they are heavily dependent on this incomplete service information and assume it is trusted. Therefore, how to satisfy users' service requirements with risks minimized at the same time motivates our work. In this paper, we first discern two risky facets that pose significant challenges to expert recommendation: Sense Drop and Blue Joy. Then we propose a unified framework called RecRisk, which integrates trust, heat equation, and modern portfolio theory to address the above challenges. The main contributions of RecRisk are twofold: (1) To select the services which satisfy the users' preferences, we design a trust-aware heat equation model (TAHE) that combines heat flow theory with trust elements. (2) We develop a flexible model based on modern portfolio theory to weigh users' satisfaction and services' risk facets, and finally recommend a ranked service list to users. Our experimental results demonstrate that RecRisk simultaneously achieves higher recommendation precision and decreases risks when compared to state-of-the-art approaches. (C) 2020 Elsevier Ltd. All rights reserved.
机译:推荐系统(RSS)在帮助用户在电子商务中快速寻找所需的服务和促进服务提供商的销售方面发挥着至关重要的作用。但是,服务提供商故意上传樱桃挑选的服务信息,以误导RSS以获得更大的利润。这种误导性建议构成了降低用户体验的风险,并在长期内逐步破坏用户对整个服务市场的信心。更糟糕的是,最新的专家推荐方法更容易受到这些风险的影响,因为它们严重依赖于这种不完整的服务信息并假设它是值得信赖的。因此,如何满足用户的服务要求,风险最小化同时激励我们的工作。在本文中,我们首先辨别出两个风险的方面,对专家建议构成重大挑战:感觉下降和蓝色快乐。然后,我们提出了一个名为RECRISK的统一框架,它集成了信任,热方程和现代组合理论来解决上述挑战。 RERCISK的主要贡献是双重的:(1)选择满足用户偏好的服务,我们设计了一个与信任元素结合热流理论的信任感知热方程模型(TAHE)。 (2)我们根据现代组合理论开发一个灵活的模型,以称量用户的满意度和服务的风险方面,最后推荐给用户排名的服务列表。我们的实验结果表明,与最先进的方法相比,随着现实方法的推荐精度和降低风险,可以同时实现更高的推荐精度并降低风险。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号