首页> 外文期刊>Expert systems with applications >Aggregation of preference relations to enhance the ranking quality of collaborative filtering based group recommender system
【24h】

Aggregation of preference relations to enhance the ranking quality of collaborative filtering based group recommender system

机译:偏好关系的聚合,提升基于协同过滤的组推荐系统的排名质量

获取原文
获取原文并翻译 | 示例

摘要

The recommendation of suitable products/items for a group of users has always been a difficult task. Most of the recommender systems are designed for individual use only. However, there are many scenarios where the recommendations are intended to serve a group of users. Each member of the group has their own set of preferences, and it is challenging to satisfy each member of the group with the recommended list. It has also been observed in recent studies that mere aggregation of preferences (e.g., ratings) does not provide good group recommendations. The quality of the group recommendation depends on two essential things: the ranking quality and the aggregation strategy. The first one confirms that the higher preferred items always appear first in the list, and the second one confirms the agreement among users of the group towards the recommendation list. Hence, this study proposes a method that uses the preference relation based matrix factorization technique to obtain the predicted preference (e.g., ratings) and then uses graph aggregation strategy to aggregate the preferences of the group members. We applied collective rationality during graph aggregation to maintain consistency in preferences among group members. Three benchmark datasets were used to evaluate and compare the proposed model with other baselines in terms of ranking quality of the group recommendation. (C) 2020 Elsevier Ltd. All rights reserved.
机译:适合一组用户的合适产品/物品的建议一直是一项艰巨的任务。大多数推荐系统仅供个人使用。但是,有许多方案旨在为一组用户提供服务。本集团的每个成员都有自己的一组偏好,并充分满足该组的每个成员使用推荐清单。在最近的研究中也观察到,仅仅只有偏好的聚合(例如,评级)没有提供良好的团体建议。集团建议的质量取决于两个必不可少的事物:排名质量和聚合策略。第一个证实,较高的优先项目始终在列表中首先出现,第二项在该组的用户对“建议”列表中确认协议。因此,本研究提出了一种利用基于偏好关系的矩阵分解技术来获得预测的偏好(例如,额定值)的方法,然后使用图形聚合策略来聚合组成员的偏好。我们在图形聚合期间应用了集体合理性,以维持组成员之间的偏好的一致性。三个基准数据集用于评估和比较群体建议的排名质量的其他基线的提出模型。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号