首页> 外文期刊>Expert systems with applications >Bioacoustic signal classification in continuous recordings: Syllable-segmentation vs sliding-window
【24h】

Bioacoustic signal classification in continuous recordings: Syllable-segmentation vs sliding-window

机译:持续录制中的生物声学信号分类:音节 - 分割VS滑动窗口

获取原文
获取原文并翻译 | 示例

摘要

Frog population has been experiencing rapid decreases worldwide, which is regarded as one of the most critical threats to the global biodiversity. Therefore, large volumes of frog recordings have been collected for assessing this decline. Building an automatic frog species classification system is becoming ever more important. The traditional system for classifying frog species consists of four steps: (1) bioacoustic signal preprocessing, (2) segmentation, (3) feature extraction, (4) classification. Each prior step has a direct impact on the subsequent step. Consequently, the final classification performance is highly affected by the initial three steps. However, the performance of bioacoustic signal segmentation is highly dependent on the background noise of those environmental recordings. In this study, we propose an end-to-end approach for acoustic classification of frog species in continuous recordings. First, a sliding window is used to segment the audio signal into frames. Then, 1D-Convolution Neural Network and long short-term memory (CNN-LSTM) network is used to learn a representation from the raw audio signal, where three Convolutional layers and one LSTM layer are used to capture the signal's pattern. Experimental results in classifying 23 Australian frog species demonstrate the effectiveness of our proposed CNN-LSTM based method. Compared to the syllable-segmentation based frog species classification system, our proposed CNN-LSTM based approach is more robust in frog species classification under various noisy conditions. (C) 2020 Elsevier Ltd. All rights reserved.
机译:青蛙人口一直在体验全球迅速减少,被认为是全球生物多样性最关键的威胁之一。因此,已经收集了大量的青蛙录制来评估这种下降。建立自动青蛙物种分类系统变得更加重要。用于分类青蛙物种的传统系统由四个步骤组成:(1)生物声学信号预处理,(2)分段,(3)特征提取,(4)分类。每个现有步骤对后续步骤直接影响。因此,最终分类性能受到最初的三个步骤的影响。然而,生物声学信号分割的性能高度依赖于这些环境记录的背景噪声。在这项研究中,我们提出了一种在连续记录中的青蛙物种声学分类的端到端方法。首先,将滑动窗口用于将音频信号分段为帧。然后,使用1D卷积神经网络和长短期存储器(CNN-LSTM)网络来学习来自原始音频信号的表示,其中三个卷积层和一个LSTM层用于捕获信号的图案。实验结果在分类23种澳大利亚青蛙物种中证明了我们所提出的基于CNN-LSTM的方法的有效性。与基于音节分割的青蛙物种分类系统相比,我们提出的基于CNN-LSTM的方法在各种嘈杂条件下的青蛙物种分类更加强大。 (c)2020 elestvier有限公司保留所有权利。

著录项

  • 来源
    《Expert systems with applications》 |2020年第8期|113390.1-113390.11|共11页
  • 作者单位

    Jiangnan Univ Key Lab Adv Proc Control Light Ind Minist Educ Wuxi 214122 Jiangsu Peoples R China|Jiangnan Univ Jiangsu Key Lab Adv Food Mfg Equipment & Technol Wuxi 214122 Jiangsu Peoples R China|Jiangnan Univ Sch Internet Things Engn Wuxi 214122 Jiangsu Peoples R China;

    Jiangnan Univ Jiangsu Key Lab Adv Food Mfg Equipment & Technol Wuxi 214122 Jiangsu Peoples R China|Jiangnan Univ Sch Internet Things Engn Wuxi 214122 Jiangsu Peoples R China;

    Univ Ottawa Dept Econ Ottawa ON K1N 6N5 Canada;

    Jiangnan Univ Jiangsu Key Lab Adv Food Mfg Equipment & Technol Wuxi 214122 Jiangsu Peoples R China|Jiangnan Univ Sch Internet Things Engn Wuxi 214122 Jiangsu Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Bioacoustic signal classification; Bioacoustic signal segmentation; 1D convolutional neural network;

    机译:生物声学信号分类;生物声学信号分割;1D卷积神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号