首页> 外文期刊>Expert systems with applications >CrowdStart: Warming up cold-start items using crowdsourcing
【24h】

CrowdStart: Warming up cold-start items using crowdsourcing

机译:Crowdstart:使用众包加热冷启动物品

获取原文
获取原文并翻译 | 示例

摘要

The cold-start problem is one of the critical challenges in personalized recommender systems. A lot of existing work has been studied to exploit a user-item rating matrix as well as additional information for users/items, e.g., user profiles, item contents, and social relationships among users. However, because existing work is primarily biased to the auxiliary information for users/items, it is difficult to identify various and reliable item neighbors that are relevant to cold-start items. To alleviate this limitation, we propose a new crowd-enabled framework, called CrowdStart, which is an integrated human-machine approach for new item recommendation. The main contributions of the CrowdStart framework are twofold: (1) To find various and reliable item neighbors for new items, we design two-step crowdsourcing tasks that harness not only machine-only algorithms but also the knowledge of crowd workers (including a few experts and a large number of non-expert workers in a crowdsourcing platform). (2) We develop a novel hybrid model to exploit the user-item rating matrix, the content information about items, and the crowd-based item neighbors from human knowledge into new item recommendation. To evaluate the effectiveness of the CrowdStart framework, we conduct extensive experiments including both a user study and simulation tests. Through the empirical study, we found that the CrowdStart framework provides relevant, diverse, reliable, and explainable crowd-based neighbors for new items and the crowd-based neighbors are meaningful for improving the accuracy of new item recommendation. The datasets and detailed experimental results are available at https://goo.gl/1iXTUE. (C) 2019 Elsevier Ltd. All rights reserved.
机译:冷启动问题是个性化推荐系统中的关键挑战之一。已经研究了许多现有的工作来利用用户项目评级矩阵以及用户/项目的其他信息,例如用户配置文件,项目内容和用户之间的社交关系。但是,由于现有工作主要偏置到用户/项目的辅助信息,因此难以识别与冷启动项相关的各种和可靠的项目邻居。为了缓解这一限制,我们提出了一种名为Crowdstart的启用新的人群框架,这是一个用于新项目推荐的集成人机方法。 Crowdstart框架的主要贡献是双重的:(1)找到新物品的各种和可靠的项目邻居,我们设计两步的众包任务,不仅是仅仅机器算法而且人群工人的知识(包括少数人专家和众多非专家工人在众包平台上)。 (2)我们开发一种新颖的混合模型来利用用户项目评级矩阵,有关项目的内容信息,以及从人类知识的人群的项目邻居进入新项目推荐。为了评估Crowdstart框架的有效性,我们进行广泛的实验,包括用户学习和仿真测试。通过实证研究,我们发现CrowdStart框架提供了相关,多样化,可靠,可扩展串的基于人群的邻居,为新物品和人群的邻居对提高新项目推荐的准确性有意义。数据集和详细的实验结果可在https://goo.gl/1ixte上获得。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号