首页> 外文期刊>Expert systems with applications >Text document clustering using Spectral Clustering algorithm with Particle Swarm Optimization
【24h】

Text document clustering using Spectral Clustering algorithm with Particle Swarm Optimization

机译:用粒子群优化使用谱聚类算法的文本文档群集

获取原文
获取原文并翻译 | 示例

摘要

Document clustering is a gathering of textual content documents into groups or clusters. The main aim is to cluster the documents, which are internally logical but considerably different from each other. It is a crucial process used in information retrieval, information extraction and document organization. In recent years, the spectral clustering is widely applied in the field of machine learning as an innovative clustering technique. This research work proposes a novel Spectral Clustering algorithm with Particle Swarm Optimization (SCPSO) to improve the text document clustering. By considering global and local optimization function, the randomization is carried out with the initial population. This research work aims at combining the spectral clustering with swarm optimization to deal with the huge volume of text documents. The proposed algorithm SCPSO is examined with the benchmark database against the other existing approaches. The proposed algorithm SCPSO is compared with the Spherical K-means, Expectation Maximization Method (EM) and standard PSO Algorithm. The concluding results show that the proposed SCPSO algorithm yields better clustering accuracy than other clustering techniques. (C) 2019 Elsevier Ltd. All rights reserved.
机译:文档群集是将文本内容文档的收集到组或群集中。主要目的是群集文件,这些文件是内部逻辑但相当于彼此的不同。它是信息检索,信息提取和文档组织中使用的重要过程。近年来,光谱聚类广泛应用于机器学习领域,作为创新聚类技术。该研究工作提出了一种具有粒子群优化(SCPSO)的新型谱聚类算法,以改善文本文档群集。通过考虑全局和本地优化功能,随机化与初始群体进行。该研究工作旨在将谱聚类与群体优化相结合,以处理大量的文本文档。通过基准数据库针对其他现有方法检查所提出的算法SCPSO。将所提出的算法SCPSO与球面K均值进行比较,期望最大化方法(EM)和标准PSO算法。结论结果表明,所提出的SCPSO算法产生比其他聚类技术更好的聚类精度。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号