首页> 外文期刊>Expert Systems with Application >Text document clustering using Spectral Clustering algorithm with Particle Swarm Optimization
【24h】

Text document clustering using Spectral Clustering algorithm with Particle Swarm Optimization

机译:使用粒子群优化的光谱聚类算法对文本文档进行聚类

获取原文
获取原文并翻译 | 示例

摘要

Document clustering is a gathering of textual content documents into groups or clusters. The main aim is to cluster the documents, which are internally logical but considerably different from each other. It is a crucial process used in information retrieval, information extraction and document organization. In recent years, the spectral clustering is widely applied in the field of machine learning as an innovative clustering technique. This research work proposes a novel Spectral Clustering algorithm with Particle Swarm Optimization (SCPSO) to improve the text document clustering. By considering global and local optimization function, the randomization is carried out with the initial population. This research work aims at combining the spectral clustering with swarm optimization to deal with the huge volume of text documents. The proposed algorithm SCPSO is examined with the benchmark database against the other existing approaches. The proposed algorithm SCPSO is compared with the Spherical K-means, Expectation Maximization Method (EM) and standard PSO Algorithm. The concluding results show that the proposed SCPSO algorithm yields better clustering accuracy than other clustering techniques. (C) 2019 Elsevier Ltd. All rights reserved.
机译:文档聚类是将文本内容文档分为组或聚类的集合。主要目的是对文档进行聚类,这些文档在内部是合乎逻辑的,但彼此之间有很大不同。这是用于信息检索,信息提取和文档组织的关键过程。近年来,频谱聚类作为一种创新的聚类技术被广泛应用于机器学习领域。这项研究工作提出了一种新颖的带有粒子群优化(SCPSO)的谱聚类算法,以改进文本文档聚类。通过考虑全局和局部优化函数,对初始种群进行随机化。这项研究工作旨在将频谱聚类与群体优化相结合,以处理大量文本文档。所提出的算法SCPSO已通过基准数据库与其他现有方法进行了比较。将提出的算法SCPSO与球形K均值,期望最大化方法(EM)和标准PSO算法进行了比较。结论表明,提出的SCPSO算法比其他聚类技术具有更好的聚类精度。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号