首页> 外文期刊>Expert systems with applications >Managing load congestion in electric vehicle charging stations under power demand uncertainty
【24h】

Managing load congestion in electric vehicle charging stations under power demand uncertainty

机译:电力需求下的电动车充电站管理负载拥塞

获取原文
获取原文并翻译 | 示例

摘要

Electric vehicles (EV) have received considerable attention in recent years due to their low operating cost, potential for energy sustainability, and zero tailpipe emissions. This study presents a novel two stage stochastic programming model integrating long- and short-term decisions to design and manage EV charging stations with renewable energy generation capability. The model captures the non-linear load congestion effect that increases exponentially as the electricity consumed by plugged-in EVs approaches the capacity of the charging station and linearizes it. The study proposes a hybrid decomposition algorithm that utilizes a Sample Average Approximation and an enhanced Progressive Hedging algorithm (PHA) inside a Constraint Generation algorithmic framework to efficiently solve the proposed optimization model. A case study based on Washington, D.C. is presented to visualize and validate the modeling results. Computational experiments demonstrate the effectiveness of the proposed algorithm in solving the problem in a practical amount of time. Finding of the study include that incorporating the load congestion factor encourages the opening of large-sized charging stations, increases the number of stored batteries, and that higher congestion costs call for a decrease in the opening of new charging stations. (C) 2019 Elsevier Ltd. All rights reserved.
机译:由于其低运营成本,能源可持续性和零尾管排放,电动车(EV)近年来受到了相当大的关注。本研究提出了一种新颖的两个阶段随机编程模型,整合了长期和短期决策,以设计和管理具有可再生能源产生能力的EV充电站。该模型捕获非线性负载拥塞效果,随着插入式EVS消耗的电力接近充电站的容量并线性化其来呈指数增加。该研究提出了一种混合分解算法,其利用约束生成算法框架内利用示例性平均近似和增强的渐进性对冲算法(PHA),以有效地解决所提出的优化模型。基于华盛顿州的案例研究,D.C.显示为可视化和验证建模结果。计算实验证明了所提出的算法在实际时间内解决问题的有效性。该研究的发现包括结合负载拥塞因子鼓励大型充电站的开度,增加存储的电池的数量,并且更高的拥塞成本调用新的充电站的开度下降。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号