首页> 外文期刊>Expert Systems with Application >Managing load congestion in electric vehicle charging stations under power demand uncertainty
【24h】

Managing load congestion in electric vehicle charging stations under power demand uncertainty

机译:在电力需求不确定的情况下管理电动汽车充电站的负荷拥堵

获取原文
获取原文并翻译 | 示例

摘要

Electric vehicles (EV) have received considerable attention in recent years due to their low operating cost, potential for energy sustainability, and zero tailpipe emissions. This study presents a novel two stage stochastic programming model integrating long- and short-term decisions to design and manage EV charging stations with renewable energy generation capability. The model captures the non-linear load congestion effect that increases exponentially as the electricity consumed by plugged-in EVs approaches the capacity of the charging station and linearizes it. The study proposes a hybrid decomposition algorithm that utilizes a Sample Average Approximation and an enhanced Progressive Hedging algorithm (PHA) inside a Constraint Generation algorithmic framework to efficiently solve the proposed optimization model. A case study based on Washington, D.C. is presented to visualize and validate the modeling results. Computational experiments demonstrate the effectiveness of the proposed algorithm in solving the problem in a practical amount of time. Finding of the study include that incorporating the load congestion factor encourages the opening of large-sized charging stations, increases the number of stored batteries, and that higher congestion costs call for a decrease in the opening of new charging stations. (C) 2019 Elsevier Ltd. All rights reserved.
机译:电动汽车(EV)由于其较低的运营成本,潜在的能源可持续性和零尾气排放,近年来受到了广泛的关注。这项研究提出了一个新颖的两阶段随机规划模型,该模型整合了长期和短期决策,以设计和管理具有可再生能源发电能力的电动汽车充电站。该模型捕获了非线性负载拥塞效应,该效应随着插入式电动汽车所消耗的电量接近充电站的容量并线性化而呈指数增加。该研究提出了一种混合分解算法,该算法利用约束生成算法框架内的样本平均逼近和增强的渐进式对冲算法(PHA)有效地解决了所提出的优化模型。提出了一个基于华盛顿特区的案例研究,以可视化和验证建模结果。计算实验证明了该算法在实际时间内解决该问题的有效性。该研究的发现包括:合并负载拥堵因子会鼓励大型充电站的开放,增加蓄电池的数量,而较高的拥堵成本则要求减少新充电站的开放。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号