首页> 外文期刊>Expert systems with applications >Matching UML class models using graph edit distance
【24h】

Matching UML class models using graph edit distance

机译:使用图形编辑距离匹配UML类模型

获取原文
获取原文并翻译 | 示例

摘要

The Unified Modelling Language (UML) class model is an essential constituent in the software system development process and a considerable body of knowledge is encompassed in the form of class model designs. A UML class model forms an elaborate specification hierarchy and comparing different class models in order to identify corresponding parts assumes considerable human expertise. To imitate such human capacity an exponentially complex task needs to be addressed. Yet, the research that involves UML class model matching focuses primarily only on a design pattern detection and studies that tackle the problem of matching any class models are rather rare. The aim of this study is to introduce a class model distance computation framework that can be utilised for comparing class models in model repositories. The framework exploits the relational structure between model elements as well as internal element features to devise a distance measure between any pair of class models. The relational structures of two class models in the form of graphs are aligned using the graph edit distance technique. The internal element feature distance computation deploys the Hungarian algorithm for optimal assignment of any two-feature sets. The distance computation framework reduces the comparison task to polynomial time complexity. The study presents experimental performance analysis of the proposed framework conducted using the precision-recall and receiver operating characteristics curves and corresponding areas under the curves. The results of the analysis indicate low false positive rates for both pairwise and pattern detection tasks. (C) 2019 Elsevier Ltd. All rights reserved.
机译:统一的建模语言(UML)类模型是软件系统开发过程中的重要组成部分,并且具有相当大的知识体型,包括类模型设计的形式。 UML类模型形成详细规范层次结构,并比较不同的类模型,以识别相应的部分假设具有相当大的人类专业知识。为了模仿这种人的能力,需要解决指数复杂的任务。然而,涉及UML类模型匹配的研究主要仅仅在设计模式检测和研究中,以解决匹配任何类模型的问题而是罕见的。本研究的目的是引入类模型距离计算框架,该距离计算框架可以用于比较模型存储库中的类模型。该框架利用模型元素之间的关系结构以及内部元素特征,以设计任何一对类模型之间的距离测量。使用图形编辑距离技术对齐图形中的两个类模型的关系结构。内部元素特征距离计算部署匈牙利算法以获得任何两个特征集的最佳分配。距离计算框架将比较任务降低到多项式时间复杂度。该研究介绍了使用精密召回和接收器操作特性曲线和曲线下的相应区域进行的所提出的框架的实验性能分析。分析结果表明对成对和模式检测任务的低误率。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号