首页> 外文期刊>Expert Systems with Application >Matching UML class models using graph edit distance
【24h】

Matching UML class models using graph edit distance

机译:使用图形编辑距离匹配UML类模型

获取原文
获取原文并翻译 | 示例

摘要

The Unified Modelling Language (UML) class model is an essential constituent in the software system development process and a considerable body of knowledge is encompassed in the form of class model designs. A UML class model forms an elaborate specification hierarchy and comparing different class models in order to identify corresponding parts assumes considerable human expertise. To imitate such human capacity an exponentially complex task needs to be addressed. Yet, the research that involves UML class model matching focuses primarily only on a design pattern detection and studies that tackle the problem of matching any class models are rather rare. The aim of this study is to introduce a class model distance computation framework that can be utilised for comparing class models in model repositories. The framework exploits the relational structure between model elements as well as internal element features to devise a distance measure between any pair of class models. The relational structures of two class models in the form of graphs are aligned using the graph edit distance technique. The internal element feature distance computation deploys the Hungarian algorithm for optimal assignment of any two-feature sets. The distance computation framework reduces the comparison task to polynomial time complexity. The study presents experimental performance analysis of the proposed framework conducted using the precision-recall and receiver operating characteristics curves and corresponding areas under the curves. The results of the analysis indicate low false positive rates for both pairwise and pattern detection tasks. (C) 2019 Elsevier Ltd. All rights reserved.
机译:统一建模语言(UML)类模型是软件系统开发过程中必不可少的组成部分,并且以类模型设计的形式包含了大量的知识。 UML类模型形成了详尽的规范层次结构,并且比较不同的类模型以识别相应的部分需要相当大的专业知识。为了模仿这种人的能力,需要解决指数级复杂的任务。然而,涉及UML类模型匹配的研究主要集中在设计模式检测上,而解决匹配任何类模型问题的研究却很少。这项研究的目的是介绍一个类模型距离计算框架,该框架可用于比较模型存储库中的类模型。该框架利用模型元素之间的关系结构以及内部元素特征来设计任何一对类模型之间的距离度量。使用图编辑距离技术将图形式的两个类模型的关系结构对齐。内部元素特征距离计算采用匈牙利算法对两个特征集进行最佳分配。距离计算框架将比较任务简化为多项式时间复杂度。该研究提出了使用精确召回和接收器工作特性曲线以及曲线下相应区域进行的拟议框架的实验性能分析。分析结果表明,成对和模式检测任务的误报率均较低。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号