首页> 外文期刊>Expert Systems with Application >A hybrid localization model using node segmentation and improved particle swarm optimization with obstacle-awareness for wireless sensor networks
【24h】

A hybrid localization model using node segmentation and improved particle swarm optimization with obstacle-awareness for wireless sensor networks

机译:无线传感器网络中使用节点分割和具有障碍感知能力的改进粒子群优化算法的混合定位模型

获取原文
获取原文并翻译 | 示例

摘要

Other than energy consumption, precision is of the utmost importance in node localization. Various wireless-sensor-network applications require the accurate information of sensor nodes' locations. For instance, an enemy intrusion detection system (e.g., geo-fencing) needs accurate sensor nodes' locations to detect where intruding enemies are located. As practical examples, forest fire, landslide, and water quality monitoring systems require the early identification of root causes' exact locations before they can widely spread. In general, range-based localization techniques often yield higher accuracies because the localization estimation can be directly derived from the distance between hops and can leverage received signal strength indicator (RSSI) values but require model approximation of various hops and distances as in range-free localization techniques. However, the important factor that affects the accuracies is sensor node positioning, especially when sensor nodes (SNs) are spread across areas filled with obstructions causing less localization accuracy. Due to the diffraction caused by obstructions, the approximate distances between pairs of anchor nodes and unknown nodes using RSSI can differ substantially from the actual values. This research, therefore, aims to improve sensor node localization in situations where SNs are in areas with obstructions. We propose a novel technique, node segmentation with improved particle swarm optimization (NS-IPSO) that divides SNs into segments to improve the accuracy of the estimated distances between pairs of anchor nodes and unknown nodes. First, we determine candidate sensor nodes that could potentially be used to segment anchor nodes in the area. Such sensor nodes (STs) are those on the shortest paths between anchor nodes that appear more often than the average appearances of all sensor nodes. Then, segment nodes (SMs, sensor nodes for segmenting the anchor nodes) are selected from all the other STs based on certain specified conditions. To further improve the localization precision, we enhance the fitness function for each anchor node by taking into account the number of hops between each anchor node and unknown nodes. Furthermore, we enhance particle swarm optimization (PSO) by considering only particles that do not change positions to possibly reduce the chance of the local optimal trap. In this research, we test our proposed scheme's performance considering three forms of sensor node positioning: C-shape, H-shape, and S-shape. The simulation results show that the proposed scheme achieves higher accuracy in comparison with the recent state-of-the-art methods, i.e., hybrid discrete PSO (HDPSO), Hybrid PSO, approximate distances node localization (ADNL), the weight-search localization algorithm (WSLA), and min-max PSO techniques, particularly the situation where sensor nodes are in areas with obstacles. (C) 2019 Elsevier Ltd. All rights reserved.
机译:除了能耗之外,精度在节点定位中至关重要。各种无线传感器网络应用程序需要传感器节点位置的准确信息。例如,敌人入侵检测系统(例如,地理围栏)需要准确的传感器节点的位置来检测入侵敌人的位置。作为实际例子,森林火灾,滑坡和水质监测系统需要在根源广泛传播之前及早发现根源的确切位置。通常,基于范围的定位技术通常会产生更高的精度,因为定位估计可以直接从跃点之间的距离中得出,并且可以利用接收信号强度指示符(RSSI)值,但是需要像无范围时那样对各种跃点和距离进行模型近似本地化技术。但是,影响精度的重要因素是传感器节点的位置,尤其是当传感器节点(SN)分布在充满障碍物的区域中时,导致定位精度降低。由于障碍物引起的衍射,使用RSSI的成对锚节点和未知节点之间的近似距离可能与实际值存在很大差异。因此,本研究旨在在SN位于有障碍物的区域中改善传感器节点的定位。我们提出了一种新技术,即具有改进粒子群算法(NS-IPSO)的节点分割,该算法将SN划分为多个段,以提高锚点节点对和未知节点之间的估计距离的准确性。首先,我们确定可能用于分割区域中锚点节点的候选传感器节点。此类传感器节点(ST)是锚节点之间最短路径上的传感器节点,其出现频率高于所有传感器节点的平均外观。然后,基于某些指定条件从所有其他ST中选择分段节点(SM,用于对锚节点进行分段的传感器节点)。为了进一步提高定位精度,我们通过考虑每个锚点节点与未知节点之间的跳数来增强每个锚点节点的适应度函数。此外,我们通过仅考虑不改变位置的粒子来增强粒子群优化(PSO),以可能减少局部最优陷阱的机会。在这项研究中,我们考虑了传感器节点定位的三种形式(C形,H形和S形)来测试提出的方案的性能。仿真结果表明,与最近的混合离散PSO(HDPSO),混合PSO,近似距离节点定位(ADNL),权重搜索定位等最新技术相比,该方案具有更高的精度。算法(WSLA)和最小最大PSO技术,尤其是传感器节点位于有障碍物的区域的情况。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号