首页> 外文期刊>Expert systems with applications >Improved distance estimation with node selection localization and particle swarm optimization for obstacle-aware wireless sensor networks
【24h】

Improved distance estimation with node selection localization and particle swarm optimization for obstacle-aware wireless sensor networks

机译:利用节点选择定位和粒子群优化对障碍物感知无线传感器网络的改进距离估计

获取原文
获取原文并翻译 | 示例

摘要

Sensor-node localization is among the greatest concerns in the field of wireless sensor networks. Range-based localization techniques generally outperform range-free techniques, particularly in terms of their accuracy. Range-based localization techniques depend on a popular distance estimation method, which requires conversion from a received signal strength indicator to distances. In a case where sensor nodes are in an area with obstacles, direct communication between certain pairs of nodes is impracticable; the data must be relayed over multihop (or detour) routes. One promising approach to improve the accuracy of sensor-node distance estimation is to segment (or cluster) sensor nodes to a restricted set of anchor nodes whose estimated distances to unknown nodes are not on a detour route. Some certain topologies can decrease the localization precision; e.g., when each group's node density is low, large empty spaces (or gaps) might affect the localization precision. If an unknown node is close to another group, using only anchor nodes within its own group could reduce the estimation precision. When anchor nodes within the same group lie along a straight line, the approximation of the unknownnode location could be misinterpreted. Thus, to enhance the localization precision, we make use of anchor nodes in other nearby groups to estimate the locations of unknown nodes. We also apply particle swarm optimization (PSO) with an improved fitness function to estimate the locations of unknown nodes. The localization performance is intensively evaluated in obstacle-prone scenarios. The simulation results show that the proposed scheme achieves higher accuracy than recent state-of-the-art PSO-based methods.
机译:传感器节点本地化是无线传感器网络领域的最大问题之一。基于范围的定位技术通常优于无距离的技术,特别是在其准确性方面。基于范围的定位技术取决于流行距离估计方法,其需要从接收的信号强度指示器转换到距离。在传感器节点在具有障碍物的区域中的情况下,某些节点之间的直接通信是不切实际的;必须通过多跳(或绕行)路由中继数据。提高传感器节点距离估计的准确性的一个有希望的方法是将段(或群集)传感器节点到受限制的锚点节点集,其估计到未知节点的距离不在绕道路由上。某些拓扑可以降低定位精度;例如,当每个组的节点密度低时,大空间(或间隙)可能会影响本地化精度。如果未知节点接近另一组,则仅在其自己的组中使用锚点,可以降低估计精度。当同一组内的锚点沿直线呈现时,可以误解未知数地点的近似。因此,为了提高本地化精度,我们在其他附近组中使用锚点节点来估计未知节点的位置。我们还使用改进的健身功能应用粒子群优化(PSO)来估计未知节点的位置。本地化性能在障碍易受障碍场景中进行了集中评估。仿真结果表明,该方案比最近最先进的基于PSO的方法实现更高的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号