首页> 外文期刊>Expert Systems with Application >A grid-quadtree model selection method for support vector machines
【24h】

A grid-quadtree model selection method for support vector machines

机译:支持向量机的网格四叉树模型选择方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a new model selection approach for Support Vector Machine (SVM), which integrates the quadtree technique with the grid search, denominated grid-quadtree (GQ) is proposed. The developed method is the first in the literature to apply the quadtree for the SVM parameters optimization. The SVM is a machine-learning technique for pattern recognition whose performance relies on its parameters determination. Thus, the model selection problem for SVM is an important field of study and requires expert and intelligent systems to solve it. Real classification data sets involve a huge number of instances and features, and the greater is the training data set dimension, the larger is the cost of a recognition system. The grid search (GS) is the most popular and the simplest method to select parameters for SVM. However, it is time-consuming, which limits its application for big-sized problems. With this in mind, the main idea of this research is to apply the quadtree technique to the GS to make it faster. Hence, this may lower computational time cost for solving problems such as bio-identification, bank credit risk and cancer detection. Based on the asymptotic behaviors of the SVM, it was noticeably observed that the quadtree is able to avoid the GS full search space evaluation. As a consequence, the GQ carries out fewer parameters analysis, solving the same problem with much more efficiency. To assess the GQ performance, ten classification benchmark data set were used. The obtained results were compared with the ones of the traditional GS. The outcomes showed that the GQ is able to find parameters that are as good as the GS ones, executing 78.8124% to 85.8415% fewer operations. This research points out that the adoption of quadtree expressively reduces the computational time of the original GS, making it much more efficient to deal with high dimensional and large data sets. (C) 2019 Elsevier Ltd. All rights reserved.
机译:本文提出了一种新的支持向量机模型选择方法,该方法将四叉树技术与网格搜索相结合,命名为网格四叉树(GQ)。所开发的方法是文献中第一个将四叉树用于SVM参数优化的方法。 SVM是一种用于模式识别的机器学习技术,其性能取决于其参数确定。因此,支持向量机的模型选择问题是一个重要的研究领域,需要专家和智能系统来解决。真实的分类数据集涉及大量的实例和特征,训练数据集的维数越大,识别系统的成本就越大。网格搜索(GS)是为SVM选择参数的最流行和最简单的方法。但是,这很耗时,这限制了它在大问题上的应用。考虑到这一点,本研究的主要思想是将四叉树技术应用于GS以使其更快。因此,这可以降低用于解决诸如生物识别,银行信用风险和癌症检测之类的问题的计算时间成本。基于SVM的渐近行为,值得注意的是,四叉树能够避免GS完整搜索空间的评估。因此,GQ进行较少的参数分析,从而以更高的效率解决了相同的问题。为了评估GQ性能,使用了十个分类基准数据集。将所得结果与传统GS的结果进行比较。结果表明,GQ能够找到与GS一样好的参数,执行的操作减少了78.8124%至85.8415%。这项研究指出,采用四叉树可以显着减少原始GS的计算时间,从而使处理高维和大数据集的效率大大提高。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号