首页> 外文期刊>Expert Systems with Application >A semantic vector space and features-based approach for automatic information filtering
【24h】

A semantic vector space and features-based approach for automatic information filtering

机译:一种基于语义向量空间和特征的自动信息过滤方法

获取原文
获取原文并翻译 | 示例

摘要

With advances in communication technology, the amount of electronic information available to the users will become increasingly important. Users are facing increasing difficulties in searching and extracting relevant and useful information. Obviously, there is a strong demand for building automatic tools that capture, filter, control and disseminate the information that will most likely match a user's interest. In this paper we propose two kinds of knowledge to improve the efficiency of information filtering process. A features-based model for representing, evaluating and classifying texts. A semantic vector space to complement the features-based model on taking into account the semantic aspect. We used a neural network to model the user's interests (profiles) and a set of genetic algorithms for the learning process to improve filtering quality. To show the efficacy of such knowledge to deal with information filtering problem, particularly we present an intelligent and dynamic email filtering tool. It assists the user in managing, selecting, classifying and discarding non-desirable messages in a professional or non-professional context. The modular structure makes it portable and easy to adapt to other filtering applications such as the web browsing. We illustrate and discuss the system performance by experimental evaluation results.
机译:随着通信技术的进步,用户可用的电子信息量将变得越来越重要。用户在搜索和提取相关和有用信息方面面临越来越大的困难。显然,强烈需要构建自动工具,以捕获,过滤,控制和传播最有可能满足用户兴趣的信息。本文提出两种知识,以提高信息过滤过程的效率。基于功能的模型,用于表示,评估和分类文本。考虑到语义方面的语义向量空间,以补充基于特征的模型。我们使用神经网络对用户的兴趣(配置文件)进行建模,并使用一组遗传算法进行学习,以提高过滤质量。为了展示这种知识处理信息过滤问题的功效,特别是,我们提供了一种智能,动态的电子邮件过滤工具。它可以帮助用户在专业或非专业环境中管理,选择,分类和丢弃不希望的消息。模块化结构使其易于携带,并易于适应其他过滤应用程序,例如Web浏览。我们通过实验评估结果来说明和讨论系统性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号