首页> 外文期刊>Expert Systems with Application >Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters
【24h】

Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters

机译:使用支持向量机的破产预测以及内核函数参数的最佳选择

获取原文
获取原文并翻译 | 示例

摘要

Bankruptcy prediction has drawn a lot of research interests in previous literature, and recent studies have shown that machine learning techniques achieved better performance than traditional statistical ones. This paper applies support vector machines (SVMs) to the bankruptcy prediction problem in an attempt to suggest a new model with better explanatory power and stability. To serve this purpose, we use a grid-search technique using 5-fold cross-validation to find out the optimal parameter values of kernel function of SVM. In addition, to evaluate the prediction accuracy of SVM, we compare its performance with those of multiple discriminant analysis (MDA), logistic regression analysis (Logit), and three-layer fully connected back-propagation neural networks (BPNs). The experiment results show that SVM outperforms the other methods.
机译:破产预测在以前的文献中引起了很多研究兴趣,并且最近的研究表明,机器学习技术比传统的统计技术具有更好的性能。本文将支持向量机(SVM)应用于破产预测问题,以期提出一种具有更好解释力和稳定性的新模型。为了达到这个目的,我们使用了具有5倍交叉验证的网格搜索技术来找出SVM内核函数的最佳参数值。此外,为了评估SVM的预测准确性,我们将其与多种判别分析(MDA),逻辑回归分析(Logit)和三层完全连接的反向传播神经网络(BPN)的性能进行比较。实验结果表明,SVM优于其他方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号