首页> 外文OA文献 >Theoretically optimal parameter choices for support vector regression machines with noisy input
【2h】

Theoretically optimal parameter choices for support vector regression machines with noisy input

机译:具有噪声输入的支持向量回归机的理论上最佳参数选择

摘要

With the evidence framework, the regularized linear regression model can be explained as the corresponding MAP problem in this paper, and the general dependency relationships that the optimal parameters in this model with noisy input should follow is then derived. The support vector regression machines Huber-SVR and Norm-r r-SVR are two typical examples of this model and their optimal parameter choices are paid particular attention. It turns out that with the existence of the typical Gaussian noisy input, the parameter μ in Huber-SVR has the linear dependency with the input noise, and the parameter r in the r-SVR has the inversely proportional to the input noise. The theoretical results here will be helpful for us to apply kernel-based regression techniques effectively in practical applications.
机译:利用证据框架,可以将正则化线性回归模型解释为相应的MAP问题,然后推导该模型中带有噪声输入的最佳参数应遵循的一般依赖关系。支持向量回归机Huber-SVR和Norm-r r-SVR是此模型的两个典型示例,它们的最佳参数选择受到特别关注。事实证明,由于存在典型的高斯噪声输入,Huber-SVR中的参数μ与输入噪声具有线性相关性,而r-SVR中的参数r与输入噪声成反比。这里的理论结果将有助于我们在实际应用中有效地应用基于核的回归技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号